Primes of the Form $x^2 + ny^2$

Steven Charlton

28 November 2012
Outline

1 Motivating Examples
2 Quadratic Forms
3 Class Field Theory
4 Hilbert Class Field
5 Narrow Class Field
6 Cubic Forms
7 Modular Forms and Counting Solutions
Fermat’s Claims

\[p = x^2 + y^2 \iff p = 2 \text{ or } p \equiv 1 \pmod{4} \]
Fermat’s Claims

\[p = x^2 + y^2 \iff p = 2 \text{ or } p \equiv 1 \pmod{4} \]

\[p = x^2 + 2y^2 \iff p = 2 \text{ or } p \equiv 1, 3 \pmod{8} \]

\[p = x^2 + 3y^2 \iff p = 3 \text{ or } p \equiv 1 \pmod{3} \]
Other Examples

\[p = x^2 + 5y^2 \iff p = 5 \text{ or } p \equiv 1, 9 \pmod{20} \]
\[p = x^2 - 2y^2 \iff p = 2 \text{ or } p \equiv 1, 7 \pmod{8} \]
For $p \neq 2, 17$

$$p = x^2 + 17y^2 \iff \begin{cases}
 t^8 + 5t^6 + 4t^4 + 5t^2 + 1 \equiv 0 \pmod{p} \\
 \text{has a solution}
\end{cases}$$

$$\iff \begin{cases}
 \frac{-17}{p} = 1 \quad \text{and} \\
 t^4 + t^2 - 2t + 1 \equiv 0 \pmod{p} \\
 \text{has a solution}
\end{cases}$$
Other Examples

For \(p \neq 2, 5, 71, 241 \)

\[p = x^2 - 142y^2 \iff \begin{cases}
 t^{12} - 14t^{10} + 109t^8 - 356t^6 + 452t^4 \\
 - 352t^2 + 1024 \equiv 0 \pmod{p} \text{ has a solution}
\end{cases} \]

\[\iff \begin{cases}
 (142/p) = 1 \text{ and} \\
 t^6 - 2t^5 + t^4 + 2t^2 - 8t + 8 \equiv 0 \pmod{p} \text{ has a solution}
\end{cases} \]
Binary Quadratic Forms

Definition

A binary quadratic form is a polynomial $f(x, y) = ax^2 + bxy + cy^2$

Discriminant $D = b^2 - 4ac$

- Positive definite if $D < 0$
- Indefinite if $D > 0$

Which primes does $f(x, y)$ represent?
Act on quadratic forms by $\text{SL}(2, \mathbb{Z})$:

$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \cdot f(x, y) = f(px + ry, qx + sy)$$

- Preserves discriminant
- Represents same integers
- Finite number of equivalence classes
- Algorithmic way of listing classes
Ideals in Quadratic Fields

\(D\) a fundamental discriminant, \(K = \mathbb{Q}(\sqrt{D})\)

Map:

\[\{\text{narrow ideal classes in } K\} \longrightarrow \{\text{quadratic forms of discriminant } D\}\]

\[a = [\alpha, \beta] \mapsto Q(x, y) = \frac{1}{N(a)} N(\alpha x + \beta y)\]
Ideals in Quadratic Fields

D a fundamental discriminant, $K = \mathbb{Q}(\sqrt{D})$

Map:

\[\{ \text{narrow ideal classes in } K \} \longrightarrow \{ \text{quadratic forms of discriminant } D \} \]

\[\alpha = [\alpha, \beta] \longmapsto Q(x, y) = \frac{1}{N(\alpha)} N(\alpha x + \beta y) \]

Theorem

This map is a bijective correspondence.
Representing Integers

Lemma

\(m \) is represented by \(f(x, y) \) if and only if there is an ideal of norm \(m \) in the same narrow class as \(\alpha \).

Theorem

An odd prime \(p \nmid D \) is represented by some quadratic form of discriminant \(D \) if and only if \((D/p) = 1 \).
Class Number One

Problem solved for class number one:

- All quadratic forms are equivalent
- $(D/p) = 1$ if and only if some form represents p
- if and only if any form represents p
Problem solved for class number one:

- All quadratic forms are equivalent
- \((D/p) = 1\) if and only if some form represents \(p\)
- if and only if any form represents \(p\)

What if the class number isn’t one?

- Need to determine the ideal classes \((p)\) splits into.
- For \(p = x^2 + ny^2\), need \((p)\) to split as principal ideals.
- How to check if an ideal is principal?
Generalised Ideal Class Groups

Definition

A modulus m is a product of primes and distinct real embeddings

$$\mathcal{I}_K(m) = \{ \text{fractional ideals prime to } m_0 \}$$
$$\mathcal{P}_{1,K}(m) = \{ \text{principal ideals } (\alpha) \mid \alpha \equiv 1 \pmod{m_0} \text{ and } \sigma(\alpha) > 0 \}$$

Definition

- $H \leq \mathcal{I}_K(m)$ is a congruence subgroup if
 $$\mathcal{P}_{1,K}(m) \leq H \leq \mathcal{I}_K(m)$$
- Then $\mathcal{I}_K(m)/H$ is a generalised ideal class group
Artin Map

L/K Galois, \mathfrak{P} prime above unramified p.

$$\tilde{G} := \text{Gal} \left(\frac{\mathcal{O}_L/\mathfrak{P}}{\mathcal{O}_K/p} \right) \cong D_\mathfrak{P} \leq \text{Gal}(L/K)$$

Definition

Artin symbol is $$((L/K)/\mathfrak{P}) := \text{Frob} (\tilde{G}) \in \text{Gal}(L/K)$$

- If L/K is Abelian the Artin symbol depends only on p
- Prime p splits completely if and only if $$((L/K)/p) = 1$$

Definition

Let m be divisible by all ramified primes. Extend $$((L/K)/\cdot)$$ to the Artin map:

$$\Phi: \mathcal{I}_K(m) \longrightarrow \text{Gal}(L/K)$$
Theorems of Class Field Theory

Theorem (Artin Reciprocity)

Let L/K be Abelian, and \mathfrak{m} divisible by all ramified primes. If the exponents of \mathfrak{m} are sufficiently large:

- The Artin map is surjective
- Its kernel is a congruence subgroup
- $\text{Gal}(L/K)$ is a generalised ideal class group

Theorem (Existence)

Given \mathfrak{m}, and H, there is a unique Abelian extension L/K, whose ramified primes divide \mathfrak{m}, such that the Artin map has kernel H.
Hilbert Class Field

Definition

The Hilbert Class Field L arises from $m = 1$, and $H = \mathcal{P}(K)$

Theorem

The Hilbert class field is the maximal unramified Abelian extension.

Theorem

*A prime \mathfrak{p} is principal if and only if it splits completely in L.***
Positive-Definite Forms

- D a fundamental discriminant
- $Q(x, y) \leftarrow \mathcal{O}_K$ in $K = \mathbb{Q}(\sqrt{-d})$
- $L = K(\alpha)$ the Hilbert class field generated by $f(t)$ over \mathbb{Q}
- $\mathbb{Q}(\alpha)/\mathbb{Q}$ generated by $g(t)$

Theorem

- For odd $p \nmid D$, p is represented by $Q(x, y)$ if and only if (p) splits completely in L/\mathbb{Q}
- If $p \nmid \text{disc } f(t)$, then if and only if $f(t)$ has a root modulo p
- If $p \nmid \text{disc } g(t)$, then if and only if $(-D/p) = 1$ and $g(t)$ has a root modulo p
Narrow Class Field

Definition

The **Narrow Class Field** L arises from $m = \sigma_1\sigma_2$, and $H = \mathcal{P}^+(K)$

Theorem

The Narrow class field is the maximal Abelian extension, unramified at all finite primes.

Theorem

A prime \mathfrak{p} is totally positive principal if and only if it splits completely in L.
Indefinite Forms

- D a fundamental discriminant
- $Q(x, y) \leftarrow \mathcal{O}_K^+ \text{ in } K = \mathbb{Q}(\sqrt{d})$
- $L = K(\alpha)$ the Narrow class field generated by $f(t)$ over \mathbb{Q}
- $\mathbb{Q}(\alpha)/\mathbb{Q}$ generated by $g(t)$

Theorem

- For odd $p \nmid D$, p is represented by $Q(x, y)$ if and only if (p) splits completely in L/\mathbb{Q}
- If $p \nmid \text{disc } f(t)$, then if and only if $f(t)$ has a root modulo p
- If $p \nmid \text{disc } g(t)$, then if and only if $(-D/p) = 1$ and $g(t)$ has a root modulo p
When is $p = a^3 + 11b^3 + 121c^3 - 33abc$?
Cubic Forms

When is \(p = a^3 + 11b^3 + 121c^3 - 33abc \)?

Plan of attack:

1. Recognize this as a norm form
2. Phrase it in terms of number fields
3. Throw some class field theory at it
4. ?
5. Profit
For $p \neq 2, 3, 11$

$$p = a^3 + 11b^3 + 121c^3 - 33abc \iff \begin{cases} t^6 - 15t^4 + 9t^2 - 4 \equiv 0 \pmod{p} \\ \text{has a solution} \end{cases}$$
Representation Numbers and Theta Series

- How many solutions?

Definition

The **Theta series** of $Q(x, y)$ is:

$$\Theta_Q := \sum_{(x, y) \in \mathbb{Z}^2} q^{Q(x, y)} = \sum_{n=0}^{\infty} r_n(Q) q^n$$

- This is a modular form (for some group, weight, character...)

Take characters χ of the class group
Look at linear combinations of the Theta series
How many solutions?

Definition

The Theta series of \(Q(x, y) \) is:

\[
\Theta_Q := \sum_{(x, y) \in \mathbb{Z}^2} q^{Q(x, y)} = \sum_{n=0}^{\infty} r_n(Q) q^n
\]

This is a modular form (for some group, weight, character…)

Take characters \(\chi \) of the class group

Look at linear combinations of the Theta series
\textbf{Definition}

\textit{L}-series of $f = \sum_n a_n q^n$ is $L(f, s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$
L-Series

Definition

L-series of $f = \sum_n a_n q^n$ is $L(f, s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$

The linear combinations here have an Euler product:

$L(f, s) = \prod_{p \text{ prime}} \frac{1}{1 - a_p p^{-s} + (D/p)p^{-2s}}$
Formulae for Representation Numbers

\[
r_{x^2+5y^2}(n) = \sum_{d|n} \left(\frac{-20}{d} \right) + \left(\frac{-4}{d} \right) \left(\frac{5}{n/d} \right)
\]

\[
r_{2x^2+2xy+3y^2}(n) = \sum_{d|n} \left(\frac{-20}{d} \right) - \left(\frac{-4}{d} \right) \left(\frac{5}{n/d} \right)
\]
Epilogue

Still plenty to be done...

- Non-fundamental discriminants
- Separating all forms of discriminant D
 - Class field theory struggles
 - Modular forms work better
- Finding other representation numbers
- More general polynomial equations
 - Non-abelian class field theory
 - Langlands program