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Introduction (1/2)

The late 1970s saw the first attempts to assimilate temperature
retrievals from satellite sounders for numerical weather prediction
(NWP).
Initial results had a modest impact on forecast skill (best over
oceans).
In the 1980’s, improvements in NWP models caused reduction of
impact of satellite data.
Problems due to background information contained in retrievals
inconsistent with that used in data assimilation: bias.
Early 1990’s: variational assimilation for NWP. Observation
operator can be nonlinear: assimilation of satellite radiances.
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Introduction (2/2)

Radiance assimilation has since proved to obtain excellent results,
especially with passive remote sounders of temperature and
humidity.
Simple error structure and effective observation monitoring.
Problems when NWP model state does not provide sufficiently
reliable information.

I assimilation of cloud-affected radiances in the infrared.
I atmospheric composition sounding.

Observation operator represents solution of radiative transfer eq.
(not always available for NWP) and has to model characteristics of
the instrument. Very high number of channels for high-res
sounders.
Recent interest (e.g., Joiner and Da Silva, 1998; Rodgers 2000,
Migliorini et al., 2008) in efficient assimilation of reduced amount
of sounding data: e.g. efficient assimilation of retrievals.
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Characterization of radiance measurements for
assimilation (1/2)

Measured radiance yo ∈ Rm, the true state of a system xt ∈ Rn

yo
rad = H(xt) + εo

rad (1)

H(xt) observation operator in xt , εo
rad radiance measurement error,

assumed Gaussian, unbiased and with covariance Rrad ∈ Rm×m.
Close to xi we can write

yo
rad ' H(xi) + H(i)(xt − xi) + εo

rad (2)

where H(i) ≡ (∂H/∂x)x=xi ∈ Rm×n.
We define

y(i)
rad ≡ yo

rad − H(xi) + H(i)xi ' H(i)xt + εo
rad. (3)
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Characterization of radiance measurements for
assimilation (2/2)

Replace Rrad ' LpΣ
2
pLT

p , where Lp ∈ Rm×p and p ≤ m non-zero
(or nonsmall, as compared to machine precision) eigenvalues of
Rrad in Σ2

p ∈ Rp×p.

Define y(i)′
rad ≡ Σ−1

p LT
p y(i)

rad ∈ Rp. From Eq. 3 we can write

y(i)′
rad ' H(i)′

rad xt + ε′rad, (4)

where H(i)′
rad ≡ Σ−1

p LT
p H(i) ∈ Rp×n and where the covariance of

ε′rad ≡ Σ−1
p LT

p εo
rad is the unit matrix Ip ∈ Rp×p.

Also define yo′
rad ∈ Rp as yo′

rad ≡ Σ−1
p LT

p yo
rad and H ′(xt) ∈ Rp as

H ′(xt) ≡ Σ−1
p LT

p H(xt). Eq. 1 can then be written as

yo′
rad = H ′(xt) + ε′rad. (5)
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The over-determined least squares problem
Assimilation of radiances (1/3)

Equivalence of radiance and retrieval assimilation in the case when the
state of the system is well observed.

Maximum likelihood estimate of xt when Eq. 5 is valid is minimum
of

Jo(x) =
1
2
(yo′

rad − H ′(x))T (yo′
rad − H ′(x)). (6)

When number of components of y(i)′
rad is p ≥ n and H(i)′

rad is full rank
(=n) we can instead minimize

J(i)
o (x) =

1
2
(y(i)′

rad − H(i)′
rad x)T (y(i)′

rad − H(i)′
rad x), (7)

The cost function J(i)
o (x) approximates Jo(x) around a small

neighbourhood of xi .
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The over-determined least squares problem
Assimilation of radiances (2/3)

We get
xi+1 = (H(i)′T

rad H(i)′
rad )−1H(i)′T

rad y(i)′
rad (8)

Gauss-Newton iteration with positive definite Hessian matrix
H(i)′T

rad H(i)′
rad ∈ Rn×n.

At convergence xi+1 ' xi ≡ x̂ML, H(i+1)′
rad ' H(i)′

rad ≡ Ĥ′rad,
y(i+1)′

rad ' y(i)′
rad ≡ ŷ′rad and Eq. 8 becomes

x̂ML = (Ĥ′TradĤ′rad)
−1Ĥ′

T

radŷ′rad (9)

x̂ML is the analysis (3D) or the retrieval (e.g., vertical profile).
From Eq. 4 at convergence we can write

x̂ML ' xt + (Ĥ′TradĤ′rad)
−1Ĥ′

T

radε
′
rad = xt + εML. (10)
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The over-determined least squares problem
Assimilation of radiances (3/3)

In this approximation, the retrieval error covariance can be written
as ŜεML = (Ĥ′TradĤ′rad)

−1.
This is justified when H(x) can be replaced with its first-order
Taylor expansion about x̂ML, of radius ' retrieval error. This can
be checked.
Let Ĥ′rad = UΛVT , where Λ ∈ Rp×n has n positive singular values

We can write ŜεML = VΛ−2
n VT , where Λ2

n ∈ Rn×n is diagonal
positive definite. We get

y′ret ≡ ΛnVT x̂ML ' ΛnVT xt + ε′ML = (11)
= H′retx

t + ε′ML

where the covariance of ε′ML ≡ ΛnVT εML is the identity matrix.
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The over-determined least squares problem
Assimilation of maximum likelihood retrievals

We want to determine ML estimate by assimilating y′ret ∈ Rn with
its rank-n observation operator H′ret ≡ ΛnVT ∈ Rn×n

The estimate is found by minimizing

J ret
o (x) =

1
2
(y′ret − H′retx)T (y′ret − H′retx). (12)

As the rank of H′ret is n we have

x̂ret
ML = (H′ret)

−1y′ret = (H′ret)
−1ΛnVT x̂ML = (13)

= x̂ML.

This proves the equivalence between radiance and retrieval
assimilation for the overdetermined least squares problem, for
moderately nonlinear observation operator around x̂ML
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The ill-posed or under-determined problem
Assimilation of radiances (1/2)

Remote sounding measurements do not provide enough
information to constrain all n components of the state vector
The maximum a posteriori estimate is found by minimizing

J(x) =
1
2
(x−xb)T B−1(x−xb)+

1
2
(yo′

rad−H ′(x))T (yo′
rad−H ′(x)). (14)

As before, we can instead minimize a succession of

J(i)(x) =
1
2
(x− xb)T B−1(x− xb) +

1
2
(y(i)′

rad − H(i)′
rad x)T (y(i)′

rad − H(i)′
rad x).

(15)
The MAP estimate x̂MAP ∈ Rn can be written as

x̂MAP = xb + K(ŷ′rad − Ĥ′radxb) (16)

with
K ≡ BĤ′Trad(Ĥ

′
radBĤ′Trad + Ip)−1 (17)
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The ill-posed or under-determined problem
Assimilation of radiances (2/2)

K ∈ Rn×p is the Kalman gain, where p < n for underdetermined
problems
Let us now define S ∈ Rp×n as the signal-to-noise matrix, of rank
r ≤ min(p,n) = p, given by S ≡ Ĥ′radB1/2 = UrΛr VT

r .
It is possible to show that rank(K) = r and that

K = B1/2VrΛr (Λ
2
r + Ir )−1UT

r . (18)

When H(x) can be replaced with its first-order Taylor expansion
about x̂MAP over a region of the state space where the posterior
probability is significant we can write

x̂MAP ' xb + KĤ′rad(x
t − xb) + Kε′rad (19)

and calculate the covariance P̂εMAP of εMAP ≡ x̂MAP − xt .
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The ill-posed or under-determined problem
Assimilation of MAP retrievals (1/2)

Assume that the observation operator for the retrieval is
approximately linear around a neighbourhood of x̂MAP of radius
comparable to the estimation error.

yret ≡ x̂MAP − xb + KĤ′radxb ∈ Rn (20)

from Eqs. 18 and 19 we can write

yret ' KĤ′radxt + εret (21)
= KSB−1/2xt + εret

= B1/2VrΛ
2
r (Λ

2
r + Ir )−1VT

r B−1/2xt + εret

where εret = Kε′rad, with covariance equal to
KKT = B1/2VrΛ

2
r (Λ

2
r + Ir )−2VT

r B1/2.
We now define y′ret ∈ Rr as we can write

y′ret ≡ Λ−1
r (Λ2

r + Ir )VT
r B−1/2yret (22)
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The ill-posed or under-determined problem
Assimilation of MAP retrievals (2/2)

It follows that Eq. 21 can be written as

y′ret ' Λr VT
r B−1/2xt + ε′ret ≡ H′retx

t + ε′ret (23)

where the covariance of ε′ret ≡ Λ−1
r (Λ2

r + Ir )VT
r B−1/2εret is equal to

the identity matrix Ir ∈ Rr×r .
From the previous definitions it follows that we can also write

y′ret = UT
r ŷ′rad. (24)

H′ret = UT
r SB−1/2 = UT

r Ĥ′rad. (25)

so that both y′ret and H′ret can also be calculated from quantities in
radiance space.
From Eq. 23 it follows that the covariance of y′ret results equal to
Λ2

r + Ir . Each component of y′ret then provides an information
content given by (1/2) ln(1 + λ2

i ).
The transformed retrieval y′ret can be assimilated by means of its
observation operator H′ret.
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with the same prior information (1/2)

We want now to assimilate y′ret in the case when the prior
information used for data assimilation is the same as that used to
determine the retrieval, by minimizing

J ret(x) =
1
2
(x−xb)T B−1(x−xb)+

1
2
(y′ret−H′retx)T (y′ret−H′retx) (26)

We get
x̂ret

MAP = xb + Kret(y′ret − H′retxb), (27)

where Kret ≡ BH′Tret(H′retBH′Tret + Ir )−1 can be written as (see Eqs.
17, 18 and 25)

Kret = BĤ′TradUr (UT
r Ĥ′radBĤ′TradUr + Ir )−1 (28)

= B1/2ST Ur (UT
r SST Ur + Ir )−1

= B1/2VrΛr (Λ
2
r + Ir )−1

= KUr .
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with the same prior information (2/2)

From Eqs. 16, 22, 25, 27 and 28 it follows that the analysis x̂ret
MAP

can be written as

x̂ret
MAP = xb + KUr (UT

r ŷ′rad − UT
r Ĥ′radxb) (29)

= xb + KUr UT
r (ŷ′rad − Ĥ′radxb)

= xb + K(ŷ′rad − Ĥ′radxb) = x̂MAP,

where we have used the equivalence K = KUr UT
r that follows from

Eq. 18.
This proves the equivalence between assimilating radiances and
retrievals in the case when the prior information used first to
determine and then to assimilate the retrieval are the same.
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with different prior information (1/5)

We want to assimilate a succession of radiance measurements
y(i)′

rad with x∗b and B∗.
The resulting analysis x̂∗MAP can be written as (see Eq. 16)

x̂∗MAP = x∗b + K∗(ŷ∗′rad − Ĥ∗′radx∗b) (30)

ŷ∗′rad and Ĥ∗′rad differ from ŷ′rad and Ĥ′rad, respectively, for the different
value of the retrieval used as linearization point of H(x). Note that,
in general, the rank of Ĥ∗′rad is s 6= r . From Eq. 4 we can write

x̂∗MAP ' x∗b + K∗Ĥ∗′rad(xt − x∗b) + K∗ε′rad (31)
= x∗b + K∗S∗B∗−1/2(xt − x∗b) + K∗ε′rad

with S∗ ≡ Ĥ∗′radB∗1/2 = U∗sΛ
∗
sV∗Ts .
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with different prior information (2/5)

From Eqs. 17 we can write

K∗ ≡ B∗Ĥ∗′Trad (Ĥ∗′radB∗Ĥ∗′Trad + Ip)−1 (32)

= B∗1/2S∗T (S∗S∗T + Ip)−1

= B∗1/2V∗sΛ
∗
s(Λ
∗2
s + Is)−1U∗Ts

= B∗1/2S∗T U∗s(U
∗T
s S∗S∗T U∗s + Is)−1U∗Ts .

Consider now the retrieval y′ret defined in Eq. 22 and estimated by
using prior information xb and B. We want to assimilate y′ret with
its observation operator H′ret by finding the state x̂ret∗

MAP that
minimizes J ret(xt) (see Eq. 26), in the case when the prior
information used to constrain y′ret is x∗b and B∗.
We need now to show that x̂ret∗

MAP ' x̂∗MAP.
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with different prior information (3/5)

From Eq. 27 it follows that x̂ret∗
MAP can be written as

x̂ret∗
MAP = x∗b + K?

ret(y
′
ret − H′retx

∗
b) (33)

where, from Eqs. 17 and 25, K?
ret ∈ Rn×r can be expressed as

K?
ret ≡ B∗H′Tret(H

′
retB
∗H′Tret + Ir )−1 (34)

= B∗Ĥ′TradUr (UT
r Ĥ′radB∗Ĥ′TradUr + Ir )−1

= B∗1/2S?T Ur (UT
r S?S?T Ur + Ir )−1

with S? ≡ Ĥ′radB∗1/2 ∈ Rp×n.
In analogy with Eq. 28, let us now find the conditions when it is
possible to write K?

ret = K∗U∗s. A comparison between Eqs. 32 and
34 shows that K?

ret = K∗U∗s when s = r and UT
r S? = U∗Tr S∗.
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with different prior information (4/5)

Therefore, by assuming UT
r S? = U∗Tr S∗, from Eqs. 4, 24, 25, 33

and 34 we can write

x̂ret∗
MAP = x∗b + K∗U∗r UT

r (ŷ′rad − Ĥ′radx∗b) (35)
' x∗b + K∗U∗r UT

r S?B∗−1/2(xt − x∗b) + K∗U∗r UT
r ε′rad

= x∗b + K∗S∗B∗−1/2(xt − x∗b) + K∗U∗r UT
r ε′rad

where K∗U∗r U∗Tr = K∗.
From Eqs. 31 and 35 it follows that the condition UT

r S? = U∗Tr S∗

implies that x̂ret∗
MAP ' x̂∗MAP within retrieval noise.

Now, by noting that S? can in general also be written as
S? = SB−1/2B∗1/2, it follows that x̂ret∗

MAP ' x̂∗MAP holds when
U∗Tr S∗B∗−1/2 = UT

r SB−1/2, that is, when
H′ret ≡ Λr VT

r B−1/2 = Λ∗r V∗Tr B∗−1/2.
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The ill-posed or under-determined problem
Assimilation of MAP retrievals with different prior information (5/5)

This means that x̂ret∗
MAP ' x̂∗MAP holds when the covariance of H′retxt ,

in the case when the covariance of xt is B, is equal to the
covariance of H′retxt , in the case when the covariance of xt is B∗,
i.e., when Λ∗ = Λ.
The equivalence is satisfied when the difference between x̂∗MAP
and x̂MAP – arising from the use of a different prior constraint –
preserves the information content of the measurements, defined
in terms of the diagonal elements of Λr .
Note that Λ∗ = Λ does not necessarily implies that B∗ = B, as the
covariance of the components of the state xt which lie in the null
space of H′ret, in the case when the covariance of xt is B∗, do not
alter the information content of that the same measurements have
in the case when the covariance of xt is B.

S. Migliorini (Univerisity of Reading) Radiance and retrieval assimilation 25 / 26



Conclusions

Conditions for equivalence between assimilation of radiances and
retrievals generated from the same set of measurements:
Observation operator approximately linear about the retrievals, in
region comparable to retrieval error.
Any prior information used should not underrepresent the
variability of the state so as to preserve the information content of
the measurements.
When posterior density is multimodal, it may be beneficial to
perform the retrieval before assimilation, using a more
sophisticated minimization algorithm.
See Migliorini, 2011, On the equivalence between radiance and
retrieval assimilation, MWR, in press, doi:
10.1175/MWR-D-10-05047.1
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