The equivalence between radiance and retrieval assimilation
 a mathematical perspective

Stefano Migliorini

\author{
National Centre for Earth Observation
 University of Reading
 ```
s.migliorini@reading.ac.uk

```
}

\section*{Outline}
(9) Introduction
(2) Characterization of radiance measurements for assimilation
(3) The over-determined least squares problem
- Assimilation of radiances
- Assimilation of maximum likelihood retrievals

4 The ill-posed or under-determined problem
- Assimilation of radiances
- Assimilation of maximum a posteriori retrievals
(5) Conclusions

\section*{Introduction (1/2)}
- The late 1970s saw the first attempts to assimilate temperature retrievals from satellite sounders for numerical weather prediction (NWP).
- Initial results had a modest impact on forecast skill (best over oceans).
- In the 1980's, improvements in NWP models caused reduction of impact of satellite data.
- Problems due to background information contained in retrievals inconsistent with that used in data assimilation: bias.
- Early 1990's: variational assimilation for NWP. Observation operator can be nonlinear: assimilation of satellite radiances.

\section*{Introduction (2/2)}
- Radiance assimilation has since proved to obtain excellent results, especially with passive remote sounders of temperature and humidity.
- Simple error structure and effective observation monitoring.
- Problems when NWP model state does not provide sufficiently reliable information.
- assimilation of cloud-affected radiances in the infrared.
- atmospheric composition sounding.
- Observation operator represents solution of radiative transfer eq. (not always available for NWP) and has to model characteristics of the instrument. Very high number of channels for high-res sounders.
- Recent interest (e.g., Joiner and Da Silva, 1998; Rodgers 2000, Migliorini et al., 2008) in efficient assimilation of reduced amount of sounding data: e.g. efficient assimilation of retrievals.

\section*{Characterization of radiance measurements for assimilation (1/2)}
- Measured radiance \(\mathbf{y}^{0} \in \mathbb{R}^{m}\), the true state of a system \(\mathbf{x}^{t} \in \mathbb{R}^{n}\)
\[
\begin{equation*}
\mathbf{y}_{\mathrm{rad}}^{o}=H\left(\mathbf{x}^{t}\right)+\epsilon_{\mathrm{rad}}^{o} \tag{1}
\end{equation*}
\]
\(H\left(\mathbf{x}^{t}\right)\) observation operator in \(\mathbf{x}^{t}, \epsilon_{\text {rad }}^{o}\) radiance measurement error, assumed Gaussian, unbiased and with covariance \(\mathbf{R}_{\mathrm{rad}} \in \mathbb{R}^{m \times m}\).
- Close to \(\mathbf{x}_{i}\) we can write
\[
\begin{equation*}
\mathbf{y}_{\mathrm{rad}}^{o} \simeq H\left(\mathbf{x}_{i}\right)+\mathbf{H}^{(i)}\left(\mathbf{x}^{t}-\mathbf{x}_{i}\right)+\epsilon_{\mathrm{rad}}^{o} \tag{2}
\end{equation*}
\]
where \(\mathbf{H}^{(i)} \equiv(\partial H / \partial \mathbf{x})_{\mathbf{x}=\mathbf{x}_{i}} \in \mathbb{R}^{m \times n}\).
- We define
\[
\begin{equation*}
\mathbf{y}_{\mathrm{rad}}^{(i)} \equiv \mathbf{y}_{\mathrm{rad}}^{\circ}-H\left(\mathbf{x}_{i}\right)+\mathbf{H}^{(i)} \mathbf{x}_{i} \simeq \mathbf{H}^{(i)} \mathbf{x}^{t}+\epsilon_{\mathrm{rad}}^{\circ} \tag{3}
\end{equation*}
\]

\section*{Characterization of radiance measurements for assimilation (2/2)}
- Replace \(\mathbf{R}_{\mathrm{rad}} \simeq \mathbf{L}_{p} \boldsymbol{\Sigma}_{p}^{2} \mathbf{L}_{p}^{T}\), where \(\mathbf{L}_{p} \in \mathbb{R}^{m \times p}\) and \(p \leq m\) non-zero (or nonsmall, as compared to machine precision) eigenvalues of \(\mathbf{R}_{\mathrm{rad}}\) in \(\boldsymbol{\Sigma}_{p}^{2} \in \mathbb{R}^{p \times p}\).
- Define \(\mathbf{y}_{\text {rad }}^{(i) \prime} \equiv \boldsymbol{\Sigma}_{p}^{-1} \mathbf{L}_{p}^{T} \mathbf{y}_{\text {rad }}^{(i)} \in \mathbb{R}^{p}\). From Eq. 3 we can write
\[
\begin{equation*}
\mathbf{y}_{\mathrm{rad}}^{(i) \prime} \simeq \mathbf{H}_{\mathrm{rad}}^{(i) \prime} \mathbf{x}^{t}+\epsilon_{\mathrm{rad}}^{\prime} \tag{4}
\end{equation*}
\]
where \(\mathbf{H}_{\mathrm{rad}}^{(i) \prime} \equiv \boldsymbol{\Sigma}_{p}^{-1} \mathbf{L}_{p}^{T} \mathbf{H}^{(i)} \in \mathbb{R}^{p \times n}\) and where the covariance of \(\epsilon_{\mathrm{rad}}^{\prime} \equiv \boldsymbol{\Sigma}_{p}^{-1} \mathbf{L}_{p}^{T} \boldsymbol{\epsilon}_{\mathrm{rad}}^{o}\) is the unit matrix \(\mathbf{I}_{p} \in \mathbb{R}^{p \times p}\).
- Also define \(\mathbf{y}_{\mathrm{rad}}^{o l} \in \mathbb{R}^{p}\) as \(\mathbf{y}_{\mathrm{rad}}^{o \prime} \equiv \boldsymbol{\Sigma}_{p}^{-1} \mathbf{L}_{p}^{T} \mathbf{y}_{\mathrm{rad}}^{o}\) and \(H^{\prime}\left(\mathbf{x}^{t}\right) \in \mathbb{R}^{p}\) as \(H^{\prime}\left(\mathbf{x}^{t}\right) \equiv \boldsymbol{\Sigma}_{p}^{-1} \mathbf{L}_{p}^{T} H\left(\mathbf{x}^{t}\right)\). Eq. 1 can then be written as
\[
\mathbf{y}_{\mathrm{rad}}^{o \prime}=H^{\prime}\left(\mathbf{x}^{t}\right)+\epsilon_{\mathrm{rad}}^{\prime} .
\]

\section*{The over-determined least squares problem}

Assimilation of radiances \((1 / 3)\)
Equivalence of radiance and retrieval assimilation in the case when the state of the system is well observed.
- Maximum likelihood estimate of \(\mathbf{x}^{t}\) when Eq. 5 is valid is minimum of
\[
\begin{equation*}
J_{o}(\mathbf{x})=\frac{1}{2}\left(\mathbf{y}_{\text {rad }}^{o l}-H^{\prime}(\mathbf{x})\right)^{T}\left(\mathbf{y}_{\text {rad }}^{o l}-H^{\prime}(\mathbf{x})\right) . \tag{6}
\end{equation*}
\]
- When number of components of \(\mathbf{y}_{\mathrm{rad}}^{(i) \prime}\) is \(p \geq n\) and \(\mathbf{H}_{\text {rad }}^{(i) \prime}\) is full rank (=n) we can instead minimize
\[
\begin{equation*}
J_{o}^{(i)}(\mathbf{x})=\frac{1}{2}\left(\mathbf{y}_{\mathrm{rad}}^{(i) \prime}-\mathbf{H}_{\mathrm{rad}}^{(i) \prime} \mathbf{x}\right)^{T}\left(\mathbf{y}_{\mathrm{rad}}^{(i) \prime}-\mathbf{H}_{\mathrm{rad}}^{(i) \prime} \mathbf{x}\right), \tag{7}
\end{equation*}
\]

The cost function \(J_{0}^{(i)}(\mathbf{x})\) approximates \(J_{0}(\mathbf{x})\) around a small neighbourhood of \(\mathbf{x}_{i}\).

\section*{The over-determined least squares problem}

Assimilation of radiances (2/3)
- We get
\[
\begin{equation*}
\mathbf{x}_{i+1}=\left(\mathbf{H}_{\mathrm{rad}}^{(i) / T} \mathbf{H}_{\mathrm{rad}}^{(i) \prime}\right)^{-1} \mathbf{H}_{\mathrm{rad}}^{(i) \tau^{T}} \mathbf{y}_{\mathrm{rad}}^{(i) \prime} \tag{8}
\end{equation*}
\]

Gauss-Newton iteration with positive definite Hessian matrix \(\mathbf{H}_{\mathrm{rad}}^{(i) / T} \mathbf{H}_{\mathrm{rad}}^{(i) \prime} \in \mathbb{R}^{n \times n}\).
- At convergence \(\mathbf{x}_{i+1} \simeq \mathbf{x}_{i} \equiv \hat{\mathbf{x}}_{\mathrm{ML}}, \mathbf{H}_{\mathrm{rad}}^{(i+1) \prime} \simeq \mathbf{H}_{\mathrm{rad}}^{(i) \prime} \equiv \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime}\),
\(\mathbf{y}_{\mathrm{rad}}^{(i+1) \prime} \simeq \mathbf{y}_{\mathrm{rad}}^{(i) \prime} \equiv \hat{\mathbf{y}}_{\mathrm{rad}}^{\prime}\) and Eq. 8 becomes
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{ML}}=\left(\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime}\right)^{-1} \hat{\mathbf{H}}_{\mathrm{rad}}^{\top} \hat{\mathbf{y}}_{\mathrm{rad}}^{\prime} \tag{9}
\end{equation*}
\]
\(\hat{\mathbf{x}}_{\mathrm{ML}}\) is the analysis (3D) or the retrieval (e.g., vertical profile).
- From Eq. 4 at convergence we can write
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{ML}} \simeq \mathbf{x}^{t}+\left(\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime}\right)^{-1} \hat{\mathbf{H}}_{\mathrm{rad}}^{T} \epsilon_{\mathrm{rad}}^{\prime}=\mathbf{x}^{t}+\boldsymbol{\epsilon}_{\mathrm{ML}} \tag{10}
\end{equation*}
\]

\section*{The over-determined least squares problem}

Assimilation of radiances \((3 / 3)\)
- In this approximation, the retrieval error covariance can be written as \(\hat{\mathbf{S}}_{\epsilon_{\mathrm{ML}}}=\left(\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime}\right)^{-1}\).
- This is justified when \(H(\mathbf{x})\) can be replaced with its first-order Taylor expansion about \(\hat{\mathbf{x}}_{\mathrm{ML}}\), of radius \(\simeq\) retrieval error. This can be checked.
- Let \(\hat{\mathbf{H}}_{\text {rad }}^{\prime}=\mathbf{U} \mathbf{\Lambda} \mathbf{V}^{T}\), where \(\boldsymbol{\Lambda} \in \mathbb{R}^{p \times n}\) has \(n\) positive singular values
- We can write \(\hat{\mathbf{S}}_{\epsilon_{\mathrm{ML}}}=\mathbf{V} \boldsymbol{\Lambda}_{n}^{-2} \mathbf{V}^{\top}\), where \(\boldsymbol{\Lambda}_{n}^{2} \in \mathbb{R}^{n \times n}\) is diagonal positive definite. We get
\[
\begin{align*}
\mathbf{y}_{\mathrm{ret}}^{\prime} & \equiv \boldsymbol{\Lambda}_{n} \mathbf{V}^{T} \hat{\mathbf{x}}_{\mathrm{ML}} \simeq \mathbf{\Lambda}_{n} \mathbf{V}^{T} \mathbf{x}^{t}+\boldsymbol{\epsilon}_{\mathrm{ML}}^{\prime}=  \tag{11}\\
& =\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}^{t}+\epsilon_{\mathrm{ML}}^{\prime}
\end{align*}
\]
where the covariance of \(\epsilon_{\mathrm{ML}}^{\prime} \equiv \boldsymbol{\Lambda}_{n} \mathbf{V}^{T} \epsilon_{\mathrm{ML}}\) is the identity matrix.

\section*{The over-determined least squares problem}

Assimilation of maximum likelihood retrievals
- We want to determine ML estimate by assimilating \(\mathbf{y}_{\mathrm{ret}}^{\prime} \in \mathbb{R}^{n}\) with its rank- \(n\) observation operator \(\mathbf{H}_{\text {ret }}^{\prime} \equiv \boldsymbol{\Lambda}_{n} \mathbf{V}^{\top} \in \mathbb{R}^{n \times n}\)
- The estimate is found by minimizing
\[
\begin{equation*}
J_{o}^{\mathrm{ret}}(\mathbf{x})=\frac{1}{2}\left(\mathbf{y}_{\mathrm{ret}}^{\prime}-\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}\right)^{T}\left(\mathbf{y}_{\mathrm{ret}}^{\prime}-\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}\right) . \tag{12}
\end{equation*}
\]
- As the rank of \(\mathbf{H}_{\text {ret }}^{\prime}\) is \(n\) we have
\[
\begin{align*}
\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{ret}} & =\left(\mathbf{H}_{\mathrm{ret}}^{\prime}\right)^{-1} \mathbf{y}_{\mathrm{ret}}^{\prime}=\left(\mathbf{H}_{\mathrm{ret}}^{\prime}\right)^{-1} \boldsymbol{\Lambda}_{n} \mathbf{V}^{T} \hat{\mathbf{x}}_{\mathrm{ML}}=  \tag{13}\\
& =\hat{\mathbf{x}}_{\mathrm{ML}}
\end{align*}
\]
- This proves the equivalence between radiance and retrieval assimilation for the overdetermined least squares problem, for moderately nonlinear observation operator around \(\hat{\mathbf{x}}_{\mathrm{ML}}\)

\section*{The ill-posed or under-determined problem}

Assimilation of radiances (1/2)
- Remote sounding measurements do not provide enough information to constrain all \(n\) components of the state vector
- The maximum a posteriori estimate is found by minimizing
\[
\begin{equation*}
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{b}\right)+\frac{1}{2}\left(\mathbf{y}_{\mathrm{rad}}^{o \prime}-H^{\prime}(\mathbf{x})\right)^{T}\left(\mathbf{y}_{\mathrm{rad}}^{o \prime}-H^{\prime}(\mathbf{x})\right) . \tag{14}
\end{equation*}
\]
- As before, we can instead minimize a succession of
\(J^{(i)}(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{b}\right)+\frac{1}{2}\left(\mathbf{y}_{\mathrm{rad}}^{(i) \prime}-\mathbf{H}_{\mathrm{rad}}^{(i) \prime} \mathbf{x}\right)^{T}\left(\mathbf{y}_{\mathrm{rad}}^{(i) \prime}-\mathbf{H}_{\mathrm{rad}}^{(i) \prime} \mathbf{x}\right)\).
- The MAP estimate \(\hat{\mathbf{x}}_{\text {MAP }} \in \mathbb{R}^{n}\) can be written as
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{MAP}}=\mathbf{x}^{b}+\mathbf{K}\left(\hat{\mathbf{y}}_{\mathrm{rad}}^{\prime}-\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}^{b}\right) \tag{16}
\end{equation*}
\]
with
\[
\mathbf{K} \equiv \mathbf{B} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T}\left(\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{B} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T}+\mathbf{I}_{p}\right)^{-1}
\]

\section*{The ill-posed or under-determined problem}

Assimilation of radiances (2/2)
- \(\mathbf{K} \in \mathbb{R}^{n \times p}\) is the Kalman gain, where \(p<n\) for underdetermined problems
- Let us now define \(\mathbf{S} \in \mathbb{R}^{p \times n}\) as the signal-to-noise matrix, of rank \(r \leq \min (p, n)=p\), given by \(\mathbf{S} \equiv \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{B}^{1 / 2}=\mathbf{U}_{r} \boldsymbol{\Lambda}_{r} \mathbf{V}_{r}^{T}\).
- It is possible to show that \(\operatorname{rank}(\mathbf{K})=r\) and that
\[
\begin{equation*}
\mathbf{K}=\mathbf{B}^{\mathbf{1} / \mathbf{2}} \mathbf{V}_{r} \boldsymbol{\Lambda}_{r}\left(\boldsymbol{\Lambda}_{r}^{2}+\mathbf{I}_{r}\right)^{-1} \mathbf{U}_{r}^{T} . \tag{18}
\end{equation*}
\]
- When \(H(\mathbf{x})\) can be replaced with its first-order Taylor expansion about \(\hat{\mathbf{x}}_{\text {MAP }}\) over a region of the state space where the posterior probability is significant we can write
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{MAP}} \simeq \mathbf{x}^{b}+\mathbf{K} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime}\left(\mathbf{x}^{t}-\mathbf{x}^{b}\right)+\mathbf{K} \epsilon_{\mathrm{rad}}^{\prime} \tag{19}
\end{equation*}
\]
- and calculate the covariance \(\hat{\mathbf{P}} \epsilon_{\mathrm{MAP}}\) of \(\epsilon_{\mathrm{MAP}} \equiv \hat{\mathbf{x}}_{\mathrm{MAP}}-\mathbf{x}^{t}\).

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals (1/2)
- Assume that the observation operator for the retrieval is approximately linear around a neighbourhood of \(\hat{\mathbf{x}}_{\text {MAP }}\) of radius comparable to the estimation error.
-
\[
\begin{equation*}
\mathbf{y}_{\mathrm{ret}} \equiv \hat{\mathbf{x}}_{\mathrm{MAP}}-\mathbf{x}^{b}+\mathbf{K} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}^{b} \in \mathbb{R}^{n} \tag{20}
\end{equation*}
\]
- from Eqs. 18 and 19 we can write
\[
\begin{align*}
\mathbf{y}_{\mathrm{ret}} & \simeq \mathbf{K} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}^{t}+\boldsymbol{\epsilon}_{\mathrm{ret}}  \tag{21}\\
& =\mathbf{K S B} \\
& =\mathbf{B}^{1 / 2} \mathbf{V}_{r} \boldsymbol{\Lambda}_{r}^{2}\left(\boldsymbol{\Lambda}_{r}^{2}+\mathbf{I}_{r}\right)^{-1} \mathbf{V}_{r}^{T} \mathbf{B}^{-1 / 2} \mathbf{x}^{t}+\boldsymbol{\epsilon}_{\mathrm{ret}}
\end{align*}
\]
where \(\epsilon_{\text {ret }}=\mathbf{K} \epsilon_{\text {rad }}^{\prime}\), with covariance equal to \(\mathbf{K} \mathbf{K}^{T}=\mathbf{B}^{1 / 2} \mathbf{V}_{r} \boldsymbol{\Lambda}_{r}^{2}\left(\boldsymbol{\Lambda}_{r}^{2}+\mathbf{I}_{r}\right)^{-2} \mathbf{V}_{r}^{T} \mathbf{B}^{1 / 2}\).
- We now define \(\mathbf{y}_{\text {ret }}^{\prime} \in \mathbb{R}^{r}\) as we can write
\[
\mathbf{y}_{\mathrm{ret}}^{\prime} \equiv \boldsymbol{\Lambda}_{r}^{-1}\left(\boldsymbol{\Lambda}_{r}^{2}+\mathbf{I}_{r}\right) \mathbf{V}_{r}^{T} \mathbf{B}^{-1 / 2} \mathbf{y}_{\mathrm{ret}}
\]

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals (2/2)
- It follows that Eq. 21 can be written as
\[
\begin{equation*}
\mathbf{y}_{\mathrm{ret}}^{\prime} \simeq \boldsymbol{\Lambda}_{r} \mathbf{V}_{r}^{T} \mathbf{B}^{-1 / 2} \mathbf{x}^{t}+\boldsymbol{\epsilon}_{\mathrm{ret}}^{\prime} \equiv \mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}^{t}+\boldsymbol{\epsilon}_{\mathrm{ret}}^{\prime} \tag{23}
\end{equation*}
\]
where the covariance of \(\epsilon_{\text {ret }}^{\prime} \equiv \boldsymbol{\Lambda}_{r}^{-1}\left(\boldsymbol{\Lambda}_{r}^{2}+\mathbf{I}_{r}\right) \mathbf{V}_{r}^{T} \mathbf{B}^{-1 / 2} \epsilon_{\text {ret }}\) is equal to the identity matrix \(\mathbf{I}_{r} \in \mathbb{R}^{r \times r}\).
- From the previous definitions it follows that we can also write
\[
\begin{gather*}
\mathbf{y}_{\mathrm{ret}}^{\prime}=\mathbf{U}_{r}^{T} \hat{\mathbf{y}}_{\mathrm{rad}}^{\prime} \cdot  \tag{24}\\
\mathbf{H}_{\mathrm{ret}}^{\prime}=\mathbf{U}_{r}^{T} \mathbf{S B} \mathbf{B}^{-1 / 2}=\mathbf{U}_{r}^{T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \tag{25}
\end{gather*}
\]
so that both \(\mathbf{y}_{\text {ret }}^{\prime}\) and \(\mathbf{H}_{\text {ret }}^{\prime}\) can also be calculated from quantities in radiance space.
- From Eq. 23 it follows that the covariance of \(\mathbf{y}_{\text {ret }}^{\prime}\) results equal to \(\boldsymbol{\Lambda}_{r}^{2}+\mathbf{I}_{r}\). Each component of \(\mathbf{y}_{\text {ret }}^{\prime}\) then provides an information content given by \((1 / 2) \ln \left(1+\lambda_{i}^{2}\right)\).
- The transformed retrieval \(\mathbf{y}_{\text {ret }}^{\prime}\) can be assimilated by means gig \(\begin{aligned} & \text { diţresity of } \\ & \text { Reading }\end{aligned}\) observation operator \(\mathbf{H}_{\text {ret }}^{\prime}\).

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with the same prior information (1/2)
- We want now to assimilate \(\mathbf{y}_{\mathrm{ret}}^{\prime}\) in the case when the prior information used for data assimilation is the same as that used to determine the retrieval, by minimizing
\[
\begin{equation*}
J^{\mathrm{ret}}(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{b}\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}-\mathbf{x}^{b}\right)+\frac{1}{2}\left(\mathbf{y}_{\mathrm{ret}}^{\prime}-\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}\right)^{T}\left(\mathbf{y}_{\mathrm{ret}}^{\prime}-\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}\right) \tag{26}
\end{equation*}
\]
- We get
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{ret}}=\mathbf{x}_{b}+\mathbf{K}_{\mathrm{ret}}\left(\mathbf{y}_{\mathrm{ret}}^{\prime}-\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}_{b}\right), \tag{27}
\end{equation*}
\]
- where \(\mathbf{K}_{\mathrm{ret}} \equiv \mathbf{B H}_{\mathrm{ret}}^{\prime \top}\left(\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{B H} \mathbf{H}_{\mathrm{ret}}^{\top}+\mathbf{I}_{\mathrm{r}}\right)^{-1}\) can be written as (see Eqs. 17, 18 and 25)
\[
\begin{align*}
\mathbf{K}_{\mathrm{ret}} & =\mathbf{B} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T} \mathbf{U}_{r}\left(\mathbf{U}_{r}^{T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{B} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T} \mathbf{U}_{r}+\mathbf{I}_{r}\right)^{-1}  \tag{28}\\
& =\mathbf{B}^{1 / 2} \mathbf{S}^{T} \mathbf{U}_{r}\left(\mathbf{U}_{r}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{U}_{r}+\mathbf{I}_{r}\right)^{-1} \\
& =\mathbf{B}^{1 / 2} \mathbf{V}_{r} \mathbf{\Lambda}_{r}\left(\mathbf{\Lambda}_{r}^{2}+\mathbf{I}_{r}\right)^{-1} \\
& =\mathbf{K} \mathbf{U}_{r} .
\end{align*}
\]

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with the same prior information (2/2)
- From Eqs. 16, 22, 25, 27 and 28 it follows that the analysis \(\hat{\mathbf{x}}_{\mathrm{MAP}}^{\text {ret }}\) can be written as
\[
\begin{align*}
\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{ret}} & =\mathbf{x}^{b}+\mathbf{K} \mathbf{U}_{r}\left(\mathbf{U}_{r}^{T} \hat{\mathbf{y}}_{\mathrm{rad}}^{\prime}-\mathbf{U}_{r}^{T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}^{b}\right)  \tag{29}\\
& =\mathbf{x}^{b}+\mathbf{K} \mathbf{U}_{r} \mathbf{U}_{r}^{T}\left(\hat{\mathbf{y}}_{\mathrm{rdd}}^{\prime}-\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}^{b}\right) \\
& =\mathbf{x}^{b}+\mathbf{K}\left(\hat{\mathbf{y}}_{\mathrm{rad}}^{\prime}-\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}^{b}\right)=\hat{\mathbf{x}}_{\mathrm{MAP}},
\end{align*}
\]
where we have used the equivalence \(\mathbf{K}=\mathbf{K} \mathbf{U}_{r} \mathbf{U}_{r}^{T}\) that follows from Eq. 18.
- This proves the equivalence between assimilating radiances and retrievals in the case when the prior information used first to determine and then to assimilate the retrieval are the same.

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with different prior information (1/5)
- We want to assimilate a succession of radiance measurements \(\mathbf{y}_{\text {rad }}^{(i) \prime}\) with \(\mathbf{x}_{b}^{*}\) and \(\mathbf{B}^{*}\).
- The resulting analysis \(\hat{\mathbf{x}}_{\mathrm{MAP}}^{*}\) can be written as (see Eq. 16)
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{MAP}}^{*}=\mathbf{x}_{b}^{*}+\mathbf{K}^{*}\left(\hat{\mathbf{y}}_{\mathrm{rad}}^{* \prime}-\hat{\mathbf{H}}_{\mathrm{rad}}^{* \prime} \mathbf{x}_{b}^{*}\right) \tag{30}
\end{equation*}
\]
- \(\hat{\mathbf{y}}_{\text {rad }}^{* \prime}\) and \(\hat{\mathbf{H}}_{\text {rad }}^{* \prime}\) differ from \(\hat{\mathbf{y}}_{\text {rad }}^{\prime}\) and \(\hat{\mathbf{H}}_{\text {rad }}^{\prime}\), respectively, for the different value of the retrieval used as linearization point of \(H(\mathbf{x})\). Note that, in general, the rank of \(\hat{\mathbf{H}}_{\text {rad }}^{* /}\) is \(s \neq r\). From Eq. 4 we can write
\[
\begin{align*}
\hat{\mathbf{x}}_{\mathrm{MAP}}^{*} & \simeq \mathbf{x}_{b}^{*}+\mathbf{K}^{*} \hat{\mathbf{H}}_{\mathrm{rad}}^{* \prime}\left(\mathbf{x}_{t}-\mathbf{x}_{b}^{*}\right)+\mathbf{K}^{*} \epsilon_{\mathrm{rad}}^{\prime}  \tag{31}\\
& =\mathbf{x}_{b}^{*}+\mathbf{K}^{*} \mathbf{S}^{*} \mathbf{B}^{*-1 / 2}\left(\mathbf{x}_{t}-\mathbf{x}_{b}^{*}\right)+\mathbf{K}^{*} \epsilon_{\mathrm{rad}}^{\prime}
\end{align*}
\]
with \(\mathbf{S}^{*} \equiv \hat{\mathbf{H}}_{\mathrm{rad}}^{* \prime} \mathbf{B}^{* 1 / 2}=\mathbf{U}_{s}^{*} \boldsymbol{\Lambda}_{s}^{*} \mathbf{V}_{s}^{* T}\).

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with different prior information (2/5)
- From Eqs. 17 we can write
\[
\begin{align*}
\mathbf{K}^{*} & \equiv \mathbf{B}^{*} \hat{\mathbf{H}}_{\mathrm{rad}}^{* T}\left(\hat{\mathbf{H}}_{\mathrm{rad}}^{* \prime} \mathbf{B}^{*} \hat{\mathbf{H}}_{\mathrm{rad}}^{* / T}+\mathbf{I}_{p}\right)^{-1}  \tag{32}\\
& =\mathbf{B}^{* 1 / 2} \mathbf{S}^{* T}\left(\mathbf{S}^{*} \mathbf{S}^{* T}+\mathbf{I}_{p}\right)^{-1} \\
& =\mathbf{B}^{* 1 / 2} \mathbf{V}_{s}^{*} \mathbf{\Lambda}_{s}^{*}\left(\mathbf{\Lambda}_{s}^{* 2}+\mathbf{I}_{s}\right)^{-1} \mathbf{U}_{s}^{* T} \\
& =\mathbf{B}^{* 1 / 2} \mathbf{S}^{* T} \mathbf{U}_{s}^{*}\left(\mathbf{U}_{s}^{* T} \mathbf{S}^{*} \mathbf{S}^{* T} \mathbf{U}_{s}^{*}+\mathbf{I}_{s}\right)^{-1} \mathbf{U}_{s}^{* T} .
\end{align*}
\]
- Consider now the retrieval \(\mathbf{y}_{\text {ret }}^{\prime}\) defined in Eq. 22 and estimated by using prior information \(\mathbf{x}_{b}\) and \(\mathbf{B}\). We want to assimilate \(\mathbf{y}_{\text {ret }}^{\prime}\) with its observation operator \(\mathbf{H}_{\text {ret }}^{\prime}\) by finding the state \(\hat{\mathbf{x}}_{\mathrm{MAP}}^{\text {ret* }}\) that minimizes \(J^{\text {ret }}\left(\mathbf{x}_{t}\right)\) (see Eq. 26), in the case when the prior information used to constrain \(\mathbf{y}_{\text {ret }}^{\prime}\) is \(\mathbf{x}_{b}^{*}\) and \(\mathbf{B}^{*}\).
- We need now to show that \(\hat{\mathbf{x}}_{\text {MAP }}^{\text {ret }} \simeq \hat{\mathbf{x}}_{\text {MAP }}^{*}\).

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with different prior information (3/5)
- From Eq. 27 it follows that \(\hat{\mathbf{x}}_{\text {MAP }}^{\text {ret* }}\) can be written as
\[
\begin{equation*}
\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{ret} *}=\mathbf{x}_{b}^{*}+\mathbf{K}_{\mathrm{ret}}^{\star}\left(\mathbf{y}_{\mathrm{ret}}^{\prime}-\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}_{b}^{*}\right) \tag{33}
\end{equation*}
\]
where, from Eqs. 17 and \(25, \mathbf{K}_{\text {ret }}^{\star} \in \mathbb{R}^{n \times r}\) can be expressed as
\[
\begin{align*}
\mathbf{K}_{\mathrm{ret}}^{\star} & \equiv \mathbf{B}^{*} \mathbf{H}_{\mathrm{ret}}^{\prime T}\left(\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{B}^{*} \mathbf{H}_{\mathrm{ret}}^{\prime T}+\mathbf{I}_{r}\right)^{-1}  \tag{34}\\
& =\mathbf{B}^{*} \hat{\mathbf{H}}_{\mathrm{rad}}^{T} \mathbf{U}_{r}\left(\mathbf{U}_{r}^{T} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{B}^{*} \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime T} \mathbf{U}_{r}+\mathbf{I}_{r}\right)^{-1} \\
& =\mathbf{B}^{* 1 / 2} \mathbf{S}^{\star T} \mathbf{U}_{r}\left(\mathbf{U}_{r}^{T} \mathbf{S}^{\star} \mathbf{S}^{\star T} \mathbf{U}_{r}+\mathbf{I}_{r}\right)^{-1}
\end{align*}
\]
with \(\mathbf{S}^{\star} \equiv \hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{B}^{* 1 / 2} \in \mathbb{R}^{p \times n}\).
- In analogy with Eq. 28, let us now find the conditions when it is possible to write \(\mathbf{K}_{\text {ret }}^{\star}=\mathbf{K}^{*} \mathbf{U}_{s}^{*}\). A comparison between Eqs. 32 and 34 shows that \(\mathbf{K}_{\text {ret }}^{\star}=\mathbf{K}^{*} \mathbf{U}_{s}^{*}\) when \(s=r\) and \(\mathbf{U}_{r}^{T} \mathbf{S}^{\star}=\mathbf{U}_{r}^{* T} \mathbf{S}^{*}\).

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with different prior information (4/5)
- Therefore, by assuming \(\mathbf{U}_{r}^{T} \mathbf{S}^{\star}=\mathbf{U}_{r}^{* T} \mathbf{S}^{*}\), from Eqs. \(4,24,25,33\) and 34 we can write
\[
\begin{align*}
\hat{\mathbf{x}}_{\mathrm{MAP}}^{\text {rete }} & =\mathbf{x}_{b}^{*}+\mathbf{K}^{*} \mathbf{U}_{r}^{*} \mathbf{U}_{r}^{T}\left(\hat{\mathbf{y}}_{\mathrm{rad}}^{\prime}-\hat{\mathbf{H}}_{\mathrm{rad}}^{\prime} \mathbf{x}_{b}^{*}\right)  \tag{35}\\
& \simeq \mathbf{x}_{b}^{*}+\mathbf{K}^{*} \mathbf{U}_{r}^{*} \mathbf{U}_{r}^{T} \mathbf{S}^{*} \mathbf{B}^{* 1 / 2}\left(\mathbf{x}_{t}-\mathbf{x}_{b}^{*}\right)+\mathbf{K}^{*} \mathbf{U}_{r}^{*} \mathbf{U}_{\epsilon}^{T} \epsilon_{\mathrm{rad}}^{\prime} \\
& =\mathbf{x}_{b}^{*}+\mathbf{K}^{*} \mathbf{S}^{*} \mathbf{B}^{*-1 / 2}\left(\mathbf{x}_{t}-\mathbf{x}_{b}^{*}\right)+\mathbf{K}^{*} \mathbf{U}_{r}^{*} \mathbf{U}_{r}^{T} \epsilon_{\mathrm{rad}}^{\prime}
\end{align*}
\]
where \(\mathbf{K}^{*} \mathbf{U}_{r}^{*} \mathbf{U}_{r}^{* T}=\mathbf{K}^{*}\).
- From Eqs. 31 and 35 it follows that the condition \(\mathbf{U}_{r}^{T} \mathbf{S}^{\star}=\mathbf{U}_{r}^{* T} \mathbf{S}^{*}\) implies that \(\hat{\mathbf{x}}_{\mathrm{MAP}}^{\text {ret }} \simeq \hat{\mathbf{x}}_{\mathrm{MAP}}^{*}\) within retrieval noise.
- Now, by noting that \(\mathbf{S}^{\star}\) can in general also be written as \(\mathbf{S}^{\star}=\mathbf{S B}^{-1 / 2} \mathbf{B}^{* 1 / 2}\), it follows that \(\hat{\mathbf{x}}_{\text {MAP }}^{\text {ret }} \simeq \hat{\mathbf{x}}_{\text {MAP }}^{*}\) holds when \(\mathbf{U}_{r}^{* T} \mathbf{S}^{*} \mathbf{B}^{*-1 / 2}=\mathbf{U}_{r}^{T} \mathbf{S B}^{-1 / 2}\), that is, when \(\mathbf{H}_{\mathrm{ret}}^{\prime} \equiv \boldsymbol{\Lambda}_{r} \mathbf{V}_{r}^{\top} \mathbf{B}^{-1 / 2}=\boldsymbol{\Lambda}_{r}^{*} \mathbf{V}_{r}^{* T} \mathbf{B}^{*-1 / 2}\).

\section*{The ill-posed or under-determined problem}

Assimilation of MAP retrievals with different prior information (5/5)
- This means that \(\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{ret} *} \simeq \hat{\mathbf{x}}_{\mathrm{MAP}}^{*}\) holds when the covariance of \(\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}_{t}\), in the case when the covariance of \(\mathbf{x}_{t}\) is \(\mathbf{B}\), is equal to the covariance of \(\mathbf{H}_{\mathrm{ret}}^{\prime} \mathbf{x}_{t}\), in the case when the covariance of \(\mathbf{x}_{t}\) is \(\mathbf{B}^{*}\), i.e., when \(\boldsymbol{\Lambda}^{*}=\boldsymbol{\Lambda}\).
- The equivalence is satisfied when the difference between \(\hat{\mathbf{x}}_{\text {MAP }}^{*}\) and \(\hat{\mathbf{x}}_{\text {MAP }}\) - arising from the use of a different prior constraint preserves the information content of the measurements, defined in terms of the diagonal elements of \(\boldsymbol{\Lambda}_{r}\).
- Note that \(\boldsymbol{\Lambda}^{*}=\boldsymbol{\Lambda}\) does not necessarily implies that \(\mathbf{B}^{*}=\mathbf{B}\), as the covariance of the components of the state \(\mathbf{x}_{t}\) which lie in the null space of \(\mathbf{H}_{\text {ret }}^{\prime}\), in the case when the covariance of \(\mathbf{x}_{t}\) is \(\mathbf{B}^{*}\), do not alter the information content of that the same measurements have in the case when the covariance of \(\mathbf{x}_{t}\) is \(\mathbf{B}\).

\section*{Conclusions}
- Conditions for equivalence between assimilation of radiances and retrievals generated from the same set of measurements:
- Observation operator approximately linear about the retrievals, in region comparable to retrieval error.
- Any prior information used should not underrepresent the variability of the state so as to preserve the information content of the measurements.
- When posterior density is multimodal, it may be beneficial to perform the retrieval before assimilation, using a more sophisticated minimization algorithm.
- See Migliorini, 2011, On the equivalence between radiance and retrieval assimilation, MWR, in press, doi: 10.1175/MWR-D-10-05047.1```

