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Statement of problem

Uncertainty in important predictions is always unavoidable but
potentially reducible.
The origin of this uncertainty can be due to initial condition
uncertainty.
The uncertainty of initial conditions at a particular location
induces via dynamical effects an uncertainty in a prediction at
another location at a later time.
Detailed knowledge of this “flow” enables one to determine
strategies to reduce appropriately initial condition errors.
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Approaches to problem

Historically perhaps the first approach to this in an atmospheric
context was due to the ECMWF group in the late 1990s who
linearized predictions about a given “best” trajectory. The
assumption then of Gaussian prediction distributions allows for an
exact analytical solution which we review later.
A different approach was later suggested by Bishop and co-workers
from NCEP. They used an ensemble Kalman filter to assimilate
potential additional observations in order to determine the best
approach to reduce a particular prediction variance. The nature of a
Kalman filter assumes both Gaussian prediction distributions as well
as a linear dynamical system. The first is assumed in the Bayesian
incorporation of observations while both are assumed in translating
the error covariance forward in time.
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Approaches to problem

Many generalizations of the Kalman filter have been proposed in the
last decade or two to overcome the two limiting assumptions
mentioned and are the subject of this workshop and participants and
co-workers have made important contributions here. Important
related work by Eyink, Anderson, Bocquet, Snyder and Hunt on
particle filters, Gaussian mixtures and local filters should also be
mentioned.
In this talk we consider instead a direct approach to the targeting
problem which relies on information theory and large ensembles.
The key point conceptually is to define the flow of uncertainty from
initial condition to prediction random variables. This needs to be
done in such a way as to ensure that it can be calculated with
practical ensembles. Given the computational expense of large
ensembles it is important then to intercompare results with existing
restrictive methods.
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Flow measures

Three different measures have been proposed in the
mathematical physics literature. The Time Lagged Mutual
Information of Kaneko; the Transfer Entropy of Schreiber and
the information flow of Liang. The first two derive from direct
probabilistic arguments concerning random variables while the
third is derived from a fundamental entropy evolution equation
for the dynamical system.
Presently the first method is the most practical in large
dynamical systems. Moreover it has a direct and transparent
interpretation in terms of the targeting problem.........
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Flow Measures

Time lagged mutual information

TLMI = I (X (t);Y (t + τ))

=
∫ ∫

p(x(t),y(t + τ)) log
(

p(x(t),y(t + τ))

p(x(t))p(y(t + τ))

)
dxdy

= h(Y (t + τ))−h(Y (t + τ)|X (t))

where h is the entropy functional and also its conditional cousin. Thus
the TLMI is the reduction of uncertainty in prediction random variable
Y (t+ τ) due to perfect knowledge of initial condition variable X (t).
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Flow measures (practicalities)

Note that the practical calculation of the TLMI measure is feasible
with ensembles since it is only a bivariate functional rather than a
higher order multivariate functional subject to the curse of
dimensionality. This latter issue affects the other two measures of
uncertainty flow. TLMI is also invariant under non-linear
non-degenerate state variable transformations since it is the relative
entropy of two distributions (the full joint distribution and the
hypothetical independent joint distribution).
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Model and initialization method

A T42 L5 primitive equation dry dynamical core model with realistic
depiction of mid-latitude jets and storms was utilized. It has realistic
orography and relaxes temperatures toward a meridionally varying but
zonally uniform state meant to represent radiative equilibrium. The model
was configured for the northern winter

The initial conditions were taken to follow a Gaussian distribution. It had
uniform variances two orders of magnitude smaller than climatology.
Covariances with a decay scale of 1000km horizontally were assumed and
no vertical covariance was assumed. This was intended to crudely mimic
a uniformly coarse observing network.

Ensembles were constucted using this Gaussian distribution and a filter
due to Lynch used to reduce gravity wave imbalances. The prediction
variable analyzed was located in the mid-Atlantic in mid latitudes. The
TLMI with respect to the full set of initial condition variables was then
evaluated. Results stabilized statistically at between 250 and 500
ensemble members.
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Model Results Horizontal

Results are shown for a 6 day surface
prediction which was well into the
non-linear regime of predictions.
The prediction and target initial
conditions were taken to be both
temperature (top) and zonal wind
(bottom). Note the limited compact
region to the west of the prediction
optimization region.
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Model Results Vertical

Results are shown for a 1 day
tropopause zonal velocity prediction
and zonal velocity initial conditions
at various heights. Shown is a
vertical section along a latitude of
40◦N. Note the strong upward
vertical propagation of uncertainty.
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Linearization formalism

We follow the tensor formalism of Palmer (1998). Here the linear
propagator matrix/tensor L takes random variables forward in time:

Propagator equation

e i (t) = Li
je

j(0).

The sensitivity vector measures the sensitivity of a prediction variable
scalar cost function J to changes in the initial condition variables and is
given by......
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Linearization formalism

Sensitivity vector

s i = g ij (L∗)k
j ∇kJ

Where g is the metric tensor used to define the problem inner product
and raise and lower tensor indices; L∗ is the adjoint tensor of L with
respect to g and ∇kJ ≡Dk is the gradient vector of the cost function in
the direction specified by k. Singular vectors and values are the
eigenvectors and eigenvalues of the matrix

Singular vector matrix

S i
j = (L∗)ik Lk

j
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Linearization formalism

If we write the gradient vector as a linear combination of the final times
singular vectors (the singular vectors with L applied) it is easy to prove
that

Sensitivity vector in terms of singular vectors

s i = λ (m)uimfm

where the λ (m) are the singular values; uim the components of the
singular vectors and fm the coefficients for Dk in terms of the final
singular vectors. It is clear that if the singular value spectrum is strongly
peaked as it often is then the sensitivity vector to initial conditions
resembles the dominant singular vectors.
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Linearization formalism

If we assume that the initial condition variables are Gaussian random
variables then, as argued plausibly by Palmer et. al., the natural metric
tensor/matrix is the initial condition covariance matrix. Furthermore
suppose we select the cost function J to be the squared magnitude of a
particular prediction variable then one can also easily show that the
sensitivity vector is then just the time lagged covariance matrix:

Sensitivity vector as a lagged covariance

s i (l) =
〈
e i (0),e l (t)

〉
where the index l refers to the cost function selection of a particular
prediction variable.
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Relationship to TLMI

In the case of Gaussian distributions the mutual information can be
calculated exactly as

Gaussian TLMI

I (e i (0);e l (t)) = log

(
1

1−
(
r il (0, t)

)2
)

where r il is the correlation matrix. This is simply a rescaled covariance
matrix so the functional connection to the usual linear sensitivity vector is
clear. Note also that if we are dealing with a linear dynamical system with
Gaussian initial conditions then the prediction variables are also Gaussian
thus the equation above is exactly the TLMI in the linear Gaussian
formalism. We therefore use this expression to intercompare methods.
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Methods intercomparison

Using the standard version of this model we compared the linearized
sensitivity analysis just discussed with the fully non-linear ensemble
method discussed earlier. Note that the linear Gaussian TLMI does
not compute the lagged correlation of initial condition and
prediction ensembles. Instead it uses the linearized propagator
matrix to project forward in time the initial condition covariance
matrix and then takes the lagged correlation. These two things can
be very different.
Initial condition ensembles were constructed using a Gaussian
distribution aligned within the local attractor with a homogenous
variance of 0.1 (the attractor has dimensions of order 10.0 in all
directions). Ensembles of size 105 were utilized and a tangent linear
version of the model used for projecting forward in time the initial
covariance matrix for the linear method. The full non-linear
ensemble was used for the non-Gaussian TLMI calculation.
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Methods intercomparison

The TLMI is a 3×3 matrix of non-negative entries for both linear
and non-linear cases with each column corresponding to a different
prediction optimization variable. The angle between vectors from
the two methods was calculated as well as the ratio of their
magnitudes. Two random vectors with non-negative entries have an
average angle of 0.59 radians (assuming entries drawn uniformly
and independently) so we use that level as a benchmark to evaluate
differences. As a first look two initial conditions were taken at
random from the attractor and results are shown. Prediction times
were taken well into the non-linear regime out to around half way
toward relaxation of the ensemble to equilibrium.
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