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Stochastic parametrizations for data assimilation

General Question: Can reduced stochastic climate models be
beneficial for forecasting and prediction?

Our setting here: Data assimilation with Ensemble Kalman filters

Under what circumstances and why can stochastic reduced models be
beneficial as forecast models in an ensemble Kalman filter setting?
Can we achieve

computational gain

better skill?
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Stochastic homogenization (Khasminsky ’66, Kurtz ’73, Papanicolaou ’76) has
been recently taken up in the context of climate models (works by
Crommelin, Franzke, Majda, Timofejev, Vanden-Eijnden).

Idea: Consider x ∈ R
n and y ∈ R

m

dx =
1

ε
f0(x, y) dt + f1(x, y) dt

dy =
1

ε2
g0(x, y) dt +

1

ε
σ(x, y) dWt

(For purely deterministic dynamics see

Melbourne and Stuart, Nonlinearity 2011)

Assume the fast y-process is

ergodic, and the average of f0 over

this measure is zero; then the

statistics of the slow x-dynamics can

be approximated in the limit ε → 0

by

dX = F (X) dt + Σ(X) dBt
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Toy Model

We study the skew product system of a chaotically forced bistable system (Givon et al.,
Nonlinearity 17 (2004))

dx

dt
= x − x

3 +
4

90ε
y2

dy1

dt
=

10

ε2
(y2 − y1)

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3)

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3)

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

t

x
τi

This model is

simple

deterministic

and has slow as fast metastable states

Homogenized climate models Durham, August 5th, 2011



Toy Model

We study the skew product system of a chaotically forced bistable system (Givon et al.,
Nonlinearity 17 (2004))

dx

dt
= x − x

3 +
4

90ε
y2

dy1

dt
=

10

ε2
(y2 − y1)

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3)

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3)

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

t

x
τi

Homogenization yields

dx = (x − x
3)dt + σdW

where

σ2

2
= −

„

4

90

«

2 Z

∞

0

y2(t) lim
T→∞

1

T

Z

T

0

y2(t+s)dsdt

has to be numerically estimated.This model is

simple

deterministic

and has slow as fast metastable states
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Parameter estimation (Siegert et al. 1998)

Assume that the slow dynamics of the deterministic system is modelled
(on a coarse time scale) by a Langevin equation

dx = d(x) dt + σ(x) dWt

Estimate drift and diffusion from a long trajectory; partition phase space
into bins [X,X + ∆X], sample at coarse sampling time h ≫ dt

D(X) =
1

h
〈(xn+1 − xn)〉

∣

∣

∣

xn∈(X+∆X)
−−−→
h→0

d(X)

S(X) =
1

h
〈(xn+1 − xn)2〉

∣

∣

∣

xn∈(X+∆X)
−−−→
h→0

σ2(X)
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Parameter estimation (Siegert et al. 1998)
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(Sensitivity of the estimated coefficients to
subsampling time; implies uncertainty of climate
model!)
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How to choose the subsampling time h?

If h is chosen too small, diffusion
coefficient does not exist

If h is chosen too large,
◮ S(X) ≈ X2(1−X2)2 h2+σ2 −−−→

h→0

d2(X)

◮ D(X) ≈ 1

h

∫

(x − X)ρ̂(x) dx = −X

h

(Sensitivity of the estimated coefficients to
subsampling time; implies uncertainty of climate
model!)
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Parameter estimation (Siegert et al. 1998)
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How to choose the subsampling time h?

If h is chosen too small, diffusion
coefficient does not exist

If h is chosen too large,
◮ S(X) ≈ X2(1−X2)2 h2+σ2 −−−→

h→0

d2(X)

◮ D(X) ≈ 1

h

∫

(x − X)ρ̂(x) dx = −X

h

Rule of thumb: Choose h ≈ 3Tf , where Tf is
the characteristic time of the fast dynamics

σ2 = 0.113
(Sensitivity of the estimated coefficients to
subsampling time; implies uncertainty of climate
model!)
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Characteristic time scales
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• Autocorrelation time τcorr

C(τ) = limT→∞
1
T

∫ T

0 x(s)x(τ + s) ds: (τcorr = 208)
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• Autocorrelation time τcorr

C(τ) = limT→∞
1
T

∫ T

0 x(s)x(τ + s) ds: (τcorr = 208)

• Mean sojourn time τ̄ (Mean exit time τe = τ̄ /2)

average over individual τi: (τ̄ = 218)
assume Poisson process Pc(τi) = 1 − exp

(

− τi

τ̄

)

: (τ̄ = 214)
homogenized model: Lclimτ̄ = −2: (τ̄ = 234)
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• Autocorrelation time τcorr

C(τ) = limT→∞
1
T

∫ T

0 x(s)x(τ + s) ds: (τcorr = 208)

• Mean sojourn time τ̄ (Mean exit time τe = τ̄ /2)

average over individual τi: (τ̄ = 218)
assume Poisson process Pc(τi) = 1 − exp

(

− τi

τ̄

)

: (τ̄ = 214)
homogenized model: Lclimτ̄ = −2: (τ̄ = 234)

• Mean transit time τ̄t

average over individual τt,i: (τ̄t = 5.9)
homogenized model: (τ̄ = 5.66)
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Accuracy and sensitivity of homogenized model

How good are climate models to reproduce the statistics?
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Accuracy and sensitivity of homogenized model

How good are climate models to reproduce the statistics?

In the limit ε → 0 there are rigorous theorems (Kurtz ’73, Papanicolaou ’76, Melbourne & Stuart ’11)
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The climate model is not sensitive to uncertainties in
ε < 0.05 but very sensitive to changes in drift and
diffusion coefficients:

full
model

climate
model

climate
model

climate
model

climate
model

(σ2 =
0.1)

(σ2 =
0.113)

(σ2 =
0.126)

(σ2 =
0.15)

τcorr 208.3 353.9 221.7 129.0 70.5
τe 108.6 205.7 117.8 75.6 40.8
τt 5.9 5.86 5.66 5.48 5.17
λ−1

max 0.0103 n.a. n.a. n.a n.a
λ−1

LS
233.7 588.2 398.6 206.4 108.6
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Numerical results

Use the climate model as a forecast model in an Ensemble Transform Kalman filter

(ETKF) setting (Tippet et al. 2003). Only the slow variable x is observed.
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Numerical results
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Numerical results

We define the skill S =
Efull

Eclimate
, S > 1 is good!

Blue - all analyses, Green - metastable states, Red - transitions
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Numerical results

σ2 = 0.1, σ2 = 0.113, σ2 = 0.126, σ2 = 0.15
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Numerical results

The numerical results suggests that stochastic climate models are

beneficial for observation time intervals ∆tobs ∈ (τt, τcorr)

good at capturing the transitions between slow metastable states

perform better than full system for diffusion larger than the “correct”
value: σ2 > 0.113
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Numerical results

The numerical results suggests that stochastic climate models are

beneficial for observation time intervals ∆tobs ∈ (τt, τcorr)

good at capturing the transitions between slow metastable states

perform better than full system for diffusion larger than the “correct”
value: σ2 > 0.113

So why, if the climate model fails to accurately reproduce the statistics of
the full model, does it perform better?
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Numerical results

Small ensemble sizes underestimation of Pf

larger ensembles

covariance inflation

Homogenized climate models Durham, August 5th, 2011



Numerical results

Small ensemble sizes underestimation of Pf

larger ensembles

covariance inflation

Increasing ensemble size k:
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Increasing covariance inflation δ:
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Reliability and Talagrand diagrams

sort the forecast ensemble Xf = [xf,1, xf,2, ..., xf,k] and create bins
(−∞, xf,1], (xf,1, xf,2], ... , (xf,k,∞) at each forecast step

increment whichever bin the actual truth falls into at each forecast
step

Convex histogram: underestimating ensemble
Concave histogram: overestimating ensemble
Flat histogram: reliable ensemble for which each ensemble member has
equal probability of being nearest to the truth
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Reliability and Talagrand diagrams

σ2 = 0.1, σ2 = 0.113, σ2 = 0.126, σ2 = 0.15
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Summary and outlook

We have

studied a homogenized stochastic climate model from a chaotic
deterministic model with slow and fast metastable states (regimes)
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Summary and outlook

We have

studied a homogenized stochastic climate model from a chaotic
deterministic model with slow and fast metastable states (regimes)

shown that the effectiveness of the stochastic climate model to
reproduce the full dynamics is very sensitive to the model parameters

shown that the skill in an ensemble data assimilation scheme is not
due to the accuracy of the model but is a finite size effect and is
entirely due to the increased variance of a stochastic model which
acts as forecast error covariance inflation

We would like to

explore the usefulness of climate models in more realistic settings

study the effectiveness of stochastic climate models in other data
assimilation schemes
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