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I. Sparse observational grids

Typically only a very small number of observations – O(104)/O(107) – are
available compared to the number of gridpoints for the model – O(109) –
→ large unobserved regions !
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Sparse observational grids

What is the effect of the sparsity of observations?

The obvious: We don’t have much information

Overestimation of error covariances (exacerbated by finite ensemble
sizes) (Whitaker et al. 2009)

The subtle: We create spurious correlations and unbalanced flow
(Kepert 2009)
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Sparse observational grids

What is the effect of the sparsity of observations?

The obvious: We don’t have much information

Overestimation of error covariances (exacerbated by finite ensemble
sizes) (Whitaker et al. 2009)

The subtle: We create spurious correlations and unbalanced flow
(Kepert 2009)

Applications are

sparse observational networks

re-analysis of climate

when direct observations are not available (mesosphere)

slow-fast systems
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Sparse observational grids

Our particular perspective here:

Proper (noisy) observations are available for some variables (observables)
but not for other unresolved variables, for which only their statistical
climatic behaviour such as their variance and their mean is available
(pseudo-observables).

Question:

How can the statistical information available for some data which are
otherwise not observable, be effectively incorporated into data assimilation
to control overestimation?
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Setting

Assume an N -dimensional dynamical system whose dynamics is given by

ż = f(z)

with the state variable z ∈ R
N (no model error for now).
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Setting

Assume an N -dimensional dynamical system whose dynamics is given by

ż = f(z)

with the state variable z ∈ R
N (no model error for now).

Assume that the state space is decomposable according to z = (x,y) with
observables x ∈ R

n and pseudo-observables y ∈ R
m and n + m = N .
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observables

Observations xobs at observation times tn = n∆tobs

observation operator H : R
N → R

n

xobs(ti) = Hz(ti) + robs(ti) with observational noise robs

robs ∼ N (0,Robs) with error covariance matrix Robs
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observation operator H : R
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xobs(ti) = Hz(ti) + robs(ti) with observational noise robs

robs ∼ N (0,Robs) with error covariance matrix Robs

pseudo-observables

Assume climatic knowledge about the pseudo-observables y (mean atarget

and variance Atarget)

pseudo-observation operator h : R
N → R

m

Rw is the unknown error covariance matrix associated with the
pseudo-observables
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observables

Observations xobs at observation times tn = n∆tobs

observation operator H : R
N → R

n

xobs(ti) = Hz(ti) + robs(ti) with observational noise robs

robs ∼ N (0,Robs) with error covariance matrix Robs

pseudo-observables

Assume climatic knowledge about the pseudo-observables y (mean atarget

and variance Atarget)

pseudo-observation operator h : R
N → R

m

Rw is the unknown error covariance matrix associated with the
pseudo-observables

Question:

How do we choose/find the error covariance matrix Rw?
(The naive first guess Rw = Atarget is wrong)
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The Variance Limiting Kalman Filter (VLKF)

An ensemble (Evensen, 1996) with k members zk

Z = [z1, z2, . . . , zk] ∈ R
N×k

is propagated by the full nonlinear dynamics

Ż = F (Z), Z(0) = Zb .

The ensemble is split into its mean z̄ and its ensemble deviation matrix Z′

Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z′

f (t)[Z′

f (t)]T

Remark: Pf (t) is rank-deficient for k < N (N ∼ 109 and k ∼ 100)
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step:
Minimise the cost function

S(z) =
1

2
(z − zf )T P−1

f (z − zf ) +
1

2
(xobs − Hz)T R−1

obs(xobs − Hz)

+
1

2
(atarget − hz)T R−1

w (atarget − hz)
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step:
Minimise the cost function

S(z) =
1

2
(z − zf )T P−1

f (z − zf ) +
1

2
(xobs − Hz)T R−1

obs(xobs − Hz)

+
1

2
(atarget − hz)T R−1

w (atarget − hz)

z̄a = z̄f − Kobs [Hz̄f − xobs] − Kw [hz̄f − atarget]

where Kobs = PaH
TR−1

obs

Kw = Pah
TR−1

w

with the covariance of the analysis

Pa =
(

P−1
f + HTR−1

obs
H + hTR−1

w h
)−1
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

Constraining the variance of the pseudo-observable hz is done by requiring

hPah
T = Atarget

Introducing Pa

−1 = P−1
f + HTR−1

obsH, we obtain

R−1
w = A−1

target −
(

hPah
T
)−1

A variance limiting Kalman filter Durham, August 6th 2011



The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

Constraining the variance of the pseudo-observable hz is done by requiring

hPah
T = Atarget

Introducing Pa

−1 = P−1
f + HTR−1

obsH, we obtain

R−1
w = A−1

target −
(

hPah
T
)−1

The naive expectation Rw = Atarget is true only for
|{Robs,Pf}| ≫ |Atarget|
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

Constraining the variance of the pseudo-observable hz is done by requiring

hPah
T = Atarget

Introducing Pa

−1 = P−1
f + HTR−1

obsH, we obtain

R−1
w = A−1

target −
(

hPah
T
)−1

The naive expectation Rw = Atarget is true only for
|{Robs,Pf}| ≫ |Atarget|

For sufficiently small background error covariance Pf , the error
covariance Rw is not positive definite (“switch”):
Update only overestimated eigendirections with |hPah

T | > |Atarget|
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The Variance Limiting Kalman Filter (VLKF)

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z′

a

[

Z′

a

]T

Method of ensemble square root filters:

Ensemble transform Kalman filter (EnTKF) (Tippett et al 2003):
Z′

a = Z′

fS with S ∈ R
k×k

Ensemble adjustment Kalman filter (EnAKF) (Anderson 2001):
Z′

a = AZ′

f with A ∈ R
N×N

A variance limiting Kalman filter Durham, August 6th 2011



The Variance Limiting Kalman Filter (VLKF)

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z′

a

[

Z′

a

]T

Method of ensemble square root filters:

Ensemble transform Kalman filter (EnTKF) (Tippett et al 2003):
Z′

a = Z′

fS with S ∈ R
k×k

Ensemble adjustment Kalman filter (EnAKF) (Anderson 2001):
Z′

a = AZ′

f with A ∈ R
N×N

Step 4: Update of the forecast

Set Zb = Za to propagate the ensemble forward again with the full
dynamics to the next observation time
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Summary of VLKF
Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z

′

f (t)[Z′

f (t)]T

Step 2: Analysis step

z̄a = z̄f + Kobs(xobs − Hz̄f ) + Kw(atarget − hz̄f )

Kobs = PaH
T
R

−1
obs , Kw = Pah

T
R

−1
w , Pa =

“

P
−1
f + H

T
R

−1
obsH+h

T
R

−1
w h

”

−1

R
−1
w = A

−1
target − (hPah

T )−1

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z

′

a

ˆ

Z
′

a

˜T

Step 4: Update of the forecast

Set Zb = Za to propagate the ensemble forward again with the full dynamics to the
next observation time.

A variance limiting Kalman filter Durham, August 6th 2011



Analytical linear toy model

Consider the system of coupled linear oscillators z = (x,y) with x ∈ R
2,

y ∈ R
2

dz = Mz dt − Γz dt + S dWt + Cz dt

with

M =

„

ωxJ 0

0 ωyJ

«

Γ =

„

γxI 0

0 γyI

«

S =

„

σxI 0

0 σyI

«

C =

„

0 λJ

0 0

«

J =

„

0 −1
1 0

«

.

Introducing the propagator L(t) = exp ((M − Γ + C)t), the solution can
be obtained using Itô’s formula

z(t) = L(t)z0 + S

∫ t

0

L(t − s) dWs

A variance limiting Kalman filter Durham, August 6th 2011



Analytical linear toy model

We can calculate the mean

m(t) = L(t)z0 ,

and covariance

Σ(t) = S (2Γ − C)−1 (I− exp (− (2Γ − C) t)) S
T ,

where

C =

„

0 λJ

−λJ 0

«

.

The climatic mean mclim ∈ R
4 and covariance matrix Σclim ∈ R

4×4 are then obtained
in the limit of t → ∞ as

mclim = lim
t→∞

m(t) = 0 ,

and

Σclim = lim
t→∞

Σ(t) = S (2Γ − C)−1
S

T .

Remark: The coupling has to be sufficiently small with λ2 < 4γxγy.
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Analytical linear toy model

We will investigate the variance constrained Kalman filter for this toy
model:

Under what conditions is Rw positive definite and the variance
constraint will be switched on?

When does the VLKF yield skill improvement compared to the
standard ETKF?
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Analytical linear toy model

We will investigate the variance constrained Kalman filter for this toy
model:

Under what conditions is Rw positive definite and the variance
constraint will be switched on?

When does the VLKF yield skill improvement compared to the
standard ETKF?

1. For an ensemble the covariance of the forecast is calculated by
averaging over realizations of the Brownian motion and over the ensemble

Pf (ti+1) = L(∆tobs)Pa(ti)LT (∆tobs) + Σ(∆tobs)

Introduce filter inflation δ ≥ 1

Restrict to small observation times ∆tobs ≪ 1

Then Pa(ti) ≈ Pf (ti+1)
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Analytical linear toy model

∆tobs(δ) >
δ(λ2 − 4γxγy) + 4γxγy

2γx(1 + γ2
y)
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For δ > 1 we can have ∆tobs < 0 (4γxγy − λ2 > 0)

∆tobs(δ = 1) > ∆tobs(δ > 1).

∂R
−1
w /∂∆tobs > 0 at ∆tobs = 0.

For λ ≫ 1 or γx ≪ 1, our expression for ∆tobs(δ) may not be consistent with the
assumption of small observation times ∆tobs ≪ 1

For ∆tobs → ∞ and large Robs, we have Pf → Σclim and the variance constraint
should not be switched on, but in numerical simulations it is?
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Analytical linear toy model

Finite size effect (no inflation):
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Analytical linear toy model

2. When does the VLKF yield skill improvement when compared to the standard ETKF?

Filter skill

E = E
t,dW ‖z̄a(ti) − ztruth(ti)‖

2
G

E
t denotes temporal average over analyzes cycles, and averaging over Brownian paths.

The norm ‖ab‖G = a
T
Gb can be employed with G = I for overall skill, G = H

T
H for

the observables only, and G = h
T
h for the pseudo-observables only.

EETKF = E
t‖(I −KobsH)L(∆tobs) ξti−1

‖2
G + E

t‖(I− KobsH)ηti
‖2
G + E

t‖Kobsrobs‖
2
G

EVLKF = E
t‖(I − K̃obsH)L(∆tobs) ξ̃ti−1

‖2
G + E

t‖(I− K̃obsH)ηti
‖2
G + E

t‖K̃obsrobs‖
2
G

with the mutually independent, normally distributed random variables

ξti
= z̄a(ti) − ztruth(ti) ∼ N (0,Pa(ti))

ηti
= S

Z ti

ti−1

L(∆tobs − s) dWs ∼ N (0,Σ(∆tobs))

robs ∼ N (0,Robs)
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Analytical linear toy model

Skill improvement for the pseudo-observables

S = EETKF/EVLKF

Remarks:

S > 1 for either γy → ∞ or γx → 0

Suggests that the skill is controlled
by the ratio of the time scales of the
observed and the unobserved
variables

∂S/∂Robs > 0 at Robs = 0
(effective slowed down relaxation
towards equilibrium of the observed
variables)

∂S/∂δ > 0

15 17 19 21
1.0109

1.0111
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1.0115

1.0117

γy

S

15 17 19 21
1.014

1.018

1.022

1.026

1.03

γy

S
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Lorenz-96 model

Consider z ∈ R
N (typically N = 40):

dzi

dt
= zi−1 (zi+1 − zi−2) − zi + F i = 1, · · · , N

zi±N = zi

This is a paradigmatic model for the midlatitude atmosphere:

has forcing F

has linear damping

non-linear terms conserve the energy 1
2

∑

i ||zi||
2
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Lorenz-96 model

Consider a latitudinal ring in the midlatitudes with a circumference of
roughly 30, 000 km. At those latitudes the doubling time is roughly
2.1–2.2 days:

observation
stations zi

For N = 40 and F = 8:
1 time unit ≈ 5 days

distance between
observation stations:
750 km ≈ 30, 000/40 km
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Lorenz-96 model

Instead of 40 observations
z1 z2 z3 z4

z5
z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16
z17

z18z19z20z21z22
z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33

z34

z35

z36

z37

z38
z39

z40
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Lorenz-96 model

Observe only every Nobs = 5 component

z5

z10

z15

z20

z25

z30

z35

z40
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Lorenz-96 model

The pseudo-observables contain the prior climatic knowledge:
atarget = µclim and Atarget = σ2

climI with µclim = 2.34 and σclim = 3.6
measured from a long time trajectory
Nobs = 6, ∆tobs = 4 hours, Robs = (0.25σclim)2I

0 50 100 150
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0

10

t (days)

z1

0 50 100 150
−10

0

10

t (days)

z5

ETKF
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Lorenz-96 model

The pseudo-observables contain the prior climatic knowledge:
atarget = µclim and Atarget = σ2

climI with µclim = 2.34 and σclim = 3.6
measured from a long time trajectory
Nobs = 6, ∆tobs = 4 hours, Robs = (0.25σclim)2I
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Lorenz-96 model

Quantify the skill improvement by the r.m.s error

E =

√

√

√

√〈
1

TD

T
∑

l=1

‖z̄a(l∆tobs) − ztruth(l∆tobs)‖2〉

Robs = (0.25σclim)2 I

Best performance of VLKF
over ETKF for:

small ∆tobs

Nobs = 4

1 2 3 4 5 6 7 8 9 10

1

1.4

1.8

2.2

2.6

∆tobs

S

 

 
N

obs
 = 3

N
obs

 = 4

N
obs

 = 5

N
obs

 = 6
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Lorenz-96 model

How is the skill distributed over
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Lorenz-96 model

There is an order of magnitude difference between the RMS errors for the observables
and the pseudo-observables for large Nobs. This suggests that the information of the
observed variables does not travel too far away from the observational sites.

Total RMS error for each site i,
i = 1, 2, · · · , 40 if only site i⋆ = 21 is

observed.

5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

3.5

4

i
R

M
S

Remark:The advective time scale of the Lorenz-96 system is much smaller than ∆tobs

which explains why the skill is not equally distributed over the sites, and why, especially

for large values of Nobs we observe a big difference between the site-averaged skills of

the observed and unobserved variables.
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Lorenz-96 model

Dependency on observational noise level Robs = (η σclim)2 I, Nobs = 4
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Lorenz-96 model

VLKF produces significant skill in sparse observational grids for

small observation intervals (< 6 hours)

the larger the observational noise the better

As before, the increased skill is a finite size effect:
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Lorenz-96 model: Filter divergence and blow-up (Harlim &

Majda (2010)) for small Robs

ETKF

VLKF

Nobs

6 0.14 x x 0.98 0.96 0.76 0.32 0.05 0.02 0.01

5 0.02 0.40 0.67 0.73 0.84 0.89 0.94 0.82 0.49 0.19

4 0 0.04 0.22 0.29 0.49 0.64 0.77 0.83 0.89 0.82

3 0 0 0 0.03 0.04 0.11 0.15 0.44 0.58 0.67

2 0 0 0 0 0 0.01 0 0.01 0.05 0.15

1 0 0 0 0 0 0 0 0 0 0

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

∆τobs

Nobs

6 0.01 0.42 0.11 0.01 0 0 0 0 0 0

5 0 0.24 0.36 0.10 0.01 0 0 0 0 0

4 0 0.03 0.22 0.12 0.06 0.02 0 0 0 0

3 0 0 0 0.02 0 0.01 0.01 0.01 0 0

2 0 0 0 0 0 0 0 0 0 0.01

1 0 0 0 0 0 0 0 0 0 0

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

∆τobs
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Lorenz-96 model: Filter divergence and blow-up (Harlim &

Majda (2010)) for small Robs

ETKF

VLKF

Nobs

6 0.14 x x 0.98 0.96 0.76 0.32 0.05 0.02 0.01

5 0.02 0.40 0.67 0.73 0.84 0.89 0.94 0.82 0.49 0.19

4 0 0.04 0.22 0.29 0.49 0.64 0.77 0.83 0.89 0.82

3 0 0 0 0.03 0.04 0.11 0.15 0.44 0.58 0.67

2 0 0 0 0 0 0.01 0 0.01 0.05 0.15

1 0 0 0 0 0 0 0 0 0 0

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

∆τobs

Nobs

6 0.01 0.42 0.11 0.01 0 0 0 0 0 0

5 0 0.24 0.36 0.10 0.01 0 0 0 0 0

4 0 0.03 0.22 0.12 0.06 0.02 0 0 0 0

3 0 0 0 0.02 0 0.01 0.01 0.01 0 0

2 0 0 0 0 0 0 0 0 0 0.01

1 0 0 0 0 0 0 0 0 0 0

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

∆τobs

(GAG, Mitchell & Reich, MWR 2011, in press)
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II. Model Error

Numerical codes tend to overestimate “noise” at the grid resolution. This
is typically controlled via artificial viscosity.
For example, to control unwanted gravity wave activity severe divergence
damping is introduced to the equations of motion to stabilize the
numerical scheme causing an underestimation of the error covariances
(Durran 1999). Sometimes we want conservation properties (J. Thuburn 2008).

Can one use numerical forecast models which are not artificially damped
and control the resulting overestimation of the forecast covariance within
the data assimilation procedure?

dzi

dt
= zi−1(zi+1 − zi−2) − γzi + F

Truth: γ = 1
Forecast model: γ < 1

Now we will be interested in the case of ∆tobs ≫ 1
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Model Error

γ = 0.5:
∆tobs = 24 hours ∆tobs = 48 hours
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Model Error

γ = 0.5:
∆tobs = 24 hours ∆tobs = 48 hours
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Model Error

Pf :
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Model Error
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increased sparsity and model error lead to overestimation
covariances of observables are also limited for VLKF
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Model Error

We consider performance over standard ETKF

S =
EE

EV
,

and over using the “poor man’s” analysis of observations and climatology

ŜE =
Ê

EE
, ŜV =

Ê

EV
.
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Model Error

We consider performance over standard ETKF

S =
EE

EV
,

and over using the “poor man’s” analysis of observations and climatology

ŜE =
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Trade-off: The smaller γ, the better skill over ETKF, but the less skill
compared with “poor man’s” analysis
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Model Error

How is the RMS error distributed over the observables and the
pseudo-observables (∆tobs = 48hrs)?
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Summary and outlook

We have here

derived a variance limiting Kalman filter (VLKF) which adaptively
damps unrealistic excitation of ensemble spread in underresolved
regions
applied this filter to a sparse observational grid

◮ has better skill than ETKF for small (≤ 6h) observation times
◮ has better skill for observables and pseudo-observables
◮ is stabilizing and avoids filter divergencies such as blow-up
◮ is robust to incomplete knowledge of the climatic mean and variance

applied this filter to model error (underdamping)
◮ has better skill than ETKF for large observation intervals (≥ 36h)
◮ has worse or equal skill for observed variables
◮ trade-off between superior skill over ETKF and being better than

observations/climatology

We will

apply this filter to slow-fast systems where fast degrees of freedom do
not need to be tracking
investigate blow-up further
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Model Error

Dependency of skill on sparsity Nobs
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Model Error

Dependency of skill on noise error Robs = (ησclim)2I
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