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Bayes linear methods: whirlwind tour

Statistical methods based on expectation and variance-covariance. No probability
distributions!

The adjusted expectation for collection B given collection D is

ED(B) = E(B) + Cov(B, D)Var(D)†(D − E(D)).

The adjusted version of the B given D is the ‘residual’ vector

AD(B) = B − ED(B).

We partition the vector B as the sum of two uncorrelated vectors:

B = ED(B) + AD(B),

We partition the variance matrix of B into 2 variance components

Var(B) = Var(ED(B)) + Var(AD(B))

These are the resolved variance matrix and the adjusted variance matrix (i.e. explained
and residual variation).
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Variance objects

The variance matrices are calculated as

VarD(B) = Var(B) − Cov(B, D)Var(D)†Cov(D, B),

RVarD(B) = Cov(B, D)Var(D)†Cov(D, B).

Our variance matrices must be non-negative definite with 0 < tr{·} < ∞. So, they might
be singular but must reflect at least one linear combination with positive variance. That
is, 0 ≤ aT Σa < ∞ ∀a, and aT Σa > 0 for some a.

We use the Moore-Penrose generalized inverse (allows for degeneracy).

The adjusted covariance matrix and resolved covariance matrix are defined similarly:

CovD(B1, B2) = Cov(B1, B2) − Cov(B1, D)Var(D)†Cov(D, B2),

RCovD(B1, B2) = Cov(B1, D)Var(D)†Cov(D, B2).

Similarities to full Bayesian updating for Gaussian quantities, and links to classical
statistical methodology, e.g. canonical correlation analysis.
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Data and diagnostics

Bayes linear methods offer a number of diagnostics, mostly comparing actual to expected
behaviour, and most based on Mahalanobis distances of various kinds.

For example, a measure of the relative difference between the data d and their prior
expectations E(D), is the discrepancy, Dis(d), computed as the Mahalanobis distance
between d and E(D):

Dis(d) = (d − E(D))T
Var(D)†(d − E(D)).

A priori, E(Dis(D)) = rk{Var(D)}. , and so we my define the discrepancy ratio

Dr(d) =
Dis(d)

rk{Var(D)}
,

as a standardized measure for the diagnostic. E(Dr(D)) = 1.

Large changes in expectation coupled to small portions of variance explained would be
quite surprising. Small changes in expectation coupled to large changes in variance would
also be surprising, albeit in a different way.

We may derive similar diagnostics for the observed adjusted expectations, defining the
adjustment discrepancy as:

Disd (B) = (Ed (B) − E(B))T [Cov(D, B)Var(D)†Cov(D, B)]†(Ed (B) − E(B)).

This is essentially the squared change in expectation from prior to posterior, relative to
variance explained, and can be compared to its expected value, rk{RVard (B)}.
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Canonical structure and the resolution transform

We are careful to pay attention to all possible linear combinations of our random
quantities for the analysis of beliefs.

The canonical structure gives a natural framework underpinning such analysis.

The resolution transform matrix is defined as

TB:D = Var(B)†Cov(B, D)Var(D)†Cov(D, B)

We can calculate the canonical directions Z1, . . . , ZrB by finding the normed right
eigenvectors of TB:D , which we write v1, . . . , vrB , ordered by eigenvalues

1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λrB ≥ 0

and scaled, for each i , as vT
i Var(B)vi = 1, so that

Yi = vT
i (B − E(B)), and VarD(Yi ) = 1 − λi .
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Canonical structure and the resolution transform II

The resolution transform is of intrinsic interest as the object which summarizes, through
the eigenstructure, all of the effects of the belief adjustment.

There is a strong relationship between this transform and classical canonical correlation
analysis.

The collection {Z1, Z2, . . .} forms a mutually uncorrelated ‘grid’ of directions over 〈B〉,
summarizing the effects of the adjustment.

E(Zi ) = 0, Var(Zi ) = 1, and VarD(Zi ) = 1 − λi . So, these constructed random quantities
are uncorrelated with prior expectation zero and prior variance one. Linear fitting on D is
expected to reduce uncertainty from one to 1− λi , so that λi is the proportion of variance
resolved, RD(Zi ) = λi .

Z1 is the quantity we learn most about. Z2 is the quantity we learn next most about,
given that it is uncorrelated with Z1. Zrk{B} is the quantity we learn least about.
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Canonical structure and the resolution transform III

Each quantity, X = aT B, may be resolved along the canonical directions as

X − E(X ) =
∑

i

Cov(X , Zi )Zi .

Thus, all changes in expectation may be deduced via the canonical structure.

The proportion of variance explained can be determined as a linear combination of the
eigenvalues of the resolution transform matrix, and is bounded by the largest and smallest
eigenvalues.

The adjustment of belief can similarly be carried out on this grid, e.g.

ED(X ) =
∑

i

Cov(X , Zi )ED(Zi ).
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The bearing

The bearing for the adjustment of B by D = d is

Zd (B) = [Ed (B) − E(B)]T Var(B)†[B − E(B)].

It expresses both the direction and the magnitude of the change between prior and
adjusted beliefs, relative to the prior covariance specification because, for any
F = uT B ∈ 〈B〉,

Cov(F , Zd (B)) = Ed (F ) − E(F ).

For any X uncorrelated with Zd (B) we have Ed (X ) = E(X ) (no change in expectation).

The biggest possible expected squared change in expectation, relative to prior variance, is
for the linear combination given by Zd (B), and the amount of change is defined to be the
size of the adjustment:

Sized (B) = Var(Zd (B)).

A natural diagnostic for assessing the magnitude of an adjustment is to compare the
largest standardized change in expectation that we observe to our expectation for the
magnitude of the largest change, evaluated prior to observing D. We can show that
E(SizeD(B)) =

∑

λi is the explained uncertainty over the structure.

The size ratio for the adjustment of B by D is

Srd (B) = [Ed (B) − E(B)]
T
Var(B)

†
[Ed (B) − E(B)]/

∑

λi .

Large (>> 1) or small (<< 1) values suggest contradictions in behaviour.
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Partial adjustments

We can carry out belief adjustments sequentially. This is informative when there is a
natural time ordering or when we want to scrutinize the process.

Each change in adjustment is a partial adjustment. Every summary and diagnostic which
we have discussed can be calculated for the partial adjustment, typically relating to the
prior variance resolved by the partial fit. Hence, there is a partial resolution transform

matrix, a partial bearing and a partial size ratio, all of which we routinely inspect.

When we adjust beliefs in stages, e.g. B by D and then F , the expected sizes of the
respective adjustments are additive:

E(SizeD∪F (B)) = E(SizeD(B)) + E(Size[F/D](B))

However, the observed sizes of the adjustments are not additive. The size of each
adjustment is the variance of the corresponding bearing:

Var(Zd∪f (B)) = Var(Zd (B)) + Var(Z[f /d ](B)) + 2Cov(Zd (B), Z[f /d ](B))

The observed value of the covariance term Cov(Zd (B), Z[f /d](B)) may be taken to
expresses the degree of support or conflict between the two collections of evidence in
determining the revision of beliefs.
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Path correlation diagnostics

As a summary, we define the path correlation to be

PC(d , [f /d ]) = Corr(Zd (B), Z[f /d](B)),

the correlation between the initial and partial bearings.

If the path correlation is near +1 then the size of the adjustment of B by D ∪ F is much
larger than the sum of the size of the adjustment by D and the size of the partial
adjustment by [F/D]; we view the two collections of data as complementary: their
combined effect in changing our beliefs is greater than the sum of the individual effects.

If the path correlation is near −1 then the two collections are giving ‘contradictory’
messages which give smaller overall changes in belief, in combination, than we would
expect from the individual adjustments with D and [F/D]; e.g. each of the individual
changes in belief might be surprisingly large but the overall change in belief might be
small, masking these differences.

The importance of such conflict depends on the magnitudes of the various changes in
beliefs, but we do wish to distinguish between analyses with a sequence of small changes
in expectation, and analyses where individual data sources suggested large changes in
beliefs but these were of a contradictory nature and so cancelled out each other.
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Regression example

Taken from Box & Tiao (1973), analysed in Goldstein & Wooff (2007).

A chemical process leads to a product Y and a by-product Z . Yields of both products are
thought to be related to the temperature of the process, X . Twelve experiments are
performed with different temperature settings (degrees Fahrenheit) to study the effect of
temperature on yield.

X Y Z X Y Z

161.30 63.70 20.30 177.60 70.00 18.20
164.00 59.50 24.20 181.70 73.70 15.40
165.70 67.90 18.00 185.60 74.10 17.80
170.10 68.80 20.50 189.00 79.60 13.30
173.90 66.10 20.10 193.50 77.10 16.70
176.20 70.40 17.50 195.70 82.80 14.80

Model:

Yi = a + bxi + ei

Zi = c + dxi + fi , i = 1, . . . , 12.

a, b, c, d explain the relationships between the responses and the stimuli; {ei , fi} are error
quantities.
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Yields of two products Y , Z as Temperature X varies

160 165 170 175 180 185 190 195

60
65

70
75

80

Temperature, X

Y
ie

ld
, Y

160 165 170 175 180 185 190 195

14
16

18
20

22
24

Temperature, X

Y
ie

ld
, Z

David Wooff (Durham University) Bayes linear revision for plates LMS July 9th 2008 12 / 29



Prior judgements

Separate runs are independent; however, in any particular run it is felt that the error
components will be correlated because slight aberrations in reaction conditions or
analytical procedures could simultaneously affect both product yields.

ei ∼ iid(0, σ2
e );fi ∼ iid(0, σ2

f
); Cov(ei , fi ) = σef ∀i , Cov(ei , fj ) = 0 ∀i 6= j .

Prior beliefs over these quantities were specified as follows. For the error quantities,

σ2
e = 6.25, σ2

f = 4, σef = 2.5,

so that the correlation between the two error components for any given run is 0.5.

We specified the following expectations and covariances between the regression
coefficients:
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4 −6 −1 0
−6 225 0 −90
−1 0 1 −2.4
0 −90 −2.4 144









.

Straightforward to construct a Bayes linear graphical model for this problem.
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Bayes linear graphical model for the regression model (i , j)

a

Yi Yj

b

xi ei ej xj

fi fj

c

Zi Zj

d
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Plate representation

a

Yi

b

xi ei

fi

c

Zi

i = 1, 2, . . . , 12 d
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Operations on Bayes linear graphical models

Fundamental notion is of (Bayes linear) separation,

bA ⊥⊥ Bc / C ,

notation for collections A, B being separated by a collection C . Separation on the graph
(DAG) is the property that for collections (nodes) A, B, C ,

I EC∪A(B) = EC (B);
I VarC∪A(B) = VarC (B);
I TB:C∪A = TB:C .

That is, C is Bayes linear sufficient for A for adjusting B, i.e. if we want to revise beliefs
for B knowing C and A, we can throw away A.

bA ⊥⊥ Bc / C ⇐⇒ Cov(A, B) = Cov(A, C)Var(C)†Cov(C , B).

Belief separation is a generalized conditional independence property (Goldstein, 1990).

BLGMs form the Bayes linear analogue of BBNs, with similar rules for node and arc
operations, construction of junction trees and propagation of information (Wilkinson,
1998; Goldstein & Wilkinson, 2000; Goldstein & Wooff 2007).
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Adjusting by a series of plates

Qj Qi

Hj G Hi

Xj Xi

Revise beliefs over the collection of
regression coefficients, G = {a, b, c, d},
by the pairs of measurements

Hi = {Yi , Zi}, i = 1, 2, . . . , 12.

with errors Qi = {Ei , Fi} and design
matrices Xi .

That is, we may write the model as

Hi = XiG + Qi , i = 1, 2, . . . , n,

where Xi =

[

1 xi 0 0
0 0 1 xi

]

.
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General case

Large class of linear template models

Hi = XiG + Qi , i = 1, 2, . . . , n,

with Var(G) = Σ (pos. def. wlog) and Var(Qi ) = Wi (pos.def.)

bHi ⊥⊥ Hjc / G

Hi is constructed from G , but belief revision of G by Hi requires arc reversals - this
complicates the graph.
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H2

 G H4

H1 H3

H5

Sequential adjustment of the
parameter set G and subsequent
observables H1, . . . , H5

Outer shading shows variance
explained by successive sources

Inner shading shows diagnostics:
I No shading → no surprising

features
I Black → unexpectedly large

changes in expectation
I Yellow → unexpectedly

small changes in
expectation

Arc labels show information
leaving/arriving plus implied
diagnostics

Circles on arcs show path
correlations: whether information
sources are consistent or
contradictory

Can use colour more effectively -
this picture is intended to work in
monochrome.
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Questions

For Goldstein & Wooff (2007), these belief revisions were constructed by brute force. We
have bHi ⊥⊥ Hjc / G , but not bHj ⊥⊥ Gc / Hi , which is what we would like to exploit.

We had in mind then that there might be interesting symmetries to understand, for such
linear templates, but ....

.... our book was already 12 years late /

So,
I What symmetries, if any, may be exploited?
I Can se say anything about sample size?
I Can we say anything about designing the next experiment?
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A sufficient set of observables

Goldstein & Wooff (2007) show that there exists a minimal linear sufficient collection of
quantities, termed the heart of the transform H(D/B), which carries all the information
required to adjust B by D (and vice-versa). Similar result in classical multivariate
statistics, e.g. seen in David Cox’s talk this morning.

The size of this collection is at most rk{Var(B)}. Such a collection may be determined by
the eigenstructure of the projection from [B] into [D] and back again.

For the adjustment of templates, this collection has a nice representation.

Construct the vector observables

Di = XT
i W−1

i
Hi

and form their mean,

D̄ =
1

n

n
∑

i=1

Di .

These constructs allow a number of separations: bHi ⊥⊥ Gc / Di , bDi ⊥⊥ Gc / D̄,
bH ⊥⊥ Gc / D̄. That is, D̄ is Bayes linear sufficient for the observables for adjusting G .

This is analogous (I think) to standard results for Gaussian models, classical and Bayesian.

David Wooff (Durham University) Bayes linear revision for plates LMS July 9th 2008 21 / 29



Residuals

We may construct alternative sets of residuals, for example

Hi − ED̄(Hi ), ∀i , and Di − ED̄(Di ), ∀i .

These are ancillary statistics: they can tell us nothing about the parameter collection G ,
but they might allow us to diagnose problems with our prior formulation.

It is natural to examine diagnostics on the observed residuals. For problems with a natural
time-ordering, it may also be useful to inspect the sequential adjustments of these
residuals by themselves.

Several natural ways of plotting these residual collections, for example with node areas
proportional to prior variation.

We do not normally show arcs between the residual collections, to avoid clutter.

The residuals may be used for variance learning and thence to two-stage Bayes linear
analysis.
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 G Dbar

Residuals

 Individual  Sequential Left-hand residuals show
observed values of Hi − ED̄(Hi ).
12 2-dimensional residuals in a
20-dimensional space.

Right-hand residuals show the
sequential adjustment of the
residual quantities by themselves.

D̄ is 4-dimensional, observed, and
used to update parameter set G .

G has 76.4% of its uncertainty
explained.

The data imply quite large
changes in expectation relative to
variation explained.

Residuals should show random
diagnostic patterns - do they?
Arguably some edge effects.

Unexpectedly large changes in
expectation at the edges,
unexpectedly small changes in the
centre. Might suggest that
assumptions about the error
quantities are inappropriate.
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Digression: second-order exchangeable sequences

Consider a second-order exchangeable vector sequence of observable random quantities
U1, U2, . . . , with E(Ui ) = µ, Var(Ui ) = Φ, Cov(Ui , Uj ) = Ψ.

Consider a further r -dimensional vector V , and that we wish to revise beliefs over V using
the n observables U1, U2, . . . , Un.

Let Ū = 1
n

∑n
i=1 Ui , and let Un be the collection {U1, U2, . . . , Un}

Then bV ⊥⊥ Unc / Ū, i.e. the sample mean is Bayes linear sufficient for the both the full
collection Un and the individual quantities Ui for adjusting V .

Construct the resolution transform TU1:V and determine its eigenvalues λ1, . . . and
corresponding eigenvectors. Construct the diagonal matrix of eigenvalues

Λn = diag{
nλ1

1 + (n − 1)λ1
, . . . ,

nλr

1 + (n − 1)λr

},

Then TV :Un = Var(V )†Cov(V , Ū)ΛnCov(Ū, V ).

Implication: everything about the belief revision for V can be determined from the
average Ū and the sample size n, so this is the essence of how we may exploit the
symmetry in beliefs over the observables.

The residual quantities Ui − EŪ(Ui ) are useless for revising beliefs over V , but can and
should be explored for anomalies.
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Design and calibration

Consider the hypothetical second-order exchangeable series of vectors A1, A2, . . . , defined
as Ai = G + Ri , with prior beliefs E(G), E(Ri ) = 0, Var(G) = Σ,

Var(Ri ) = (
1

n
Ω)† = (

1

n

n
∑

i=1

XT
i W−1

i
Xi )

† ∀i ,

and other correlations being zero.

It can be established that

EH(G) = EA(G), VarH(G) = VarA(G), TG :H = TG :A.

That is, the sequence of observables H1, H2, . . . , Hn and its implications for learning about
G is consistent with the existence of an infinite exchangeable sequence A1, A2, . . . with
the given belief specifications.

Therefore, we may use the resolution transform TG :A to explore sample size
considerations, on the assumption that the mean weighted precision matrix
1
n

∑n
i=1 XT

i W−1
i

Xi is “typical” of the weighted precision matrices

XT
n+1W

−1
n+1Xn+1, XT

n+2W
−1
n+2Xn+2 . . .

at additional design points.
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Effect of increasing sample size on variance explained
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Solve the generalized eigenvalue
problem

ΣV = (Σ+n[
n

∑

i=1

XT
i W−1

i
Xi ]

†)VΛ1,

to obtain eigenvalues Λ1 for a
notional sample size m = 1 from
the sequence A1, A2, . . .

Λm = mΛ1[(m − 1)Λ1 + I ]−1, we
only need to compute the m = 1
structure, everything else can be
deduced.

Variance resolutions for original
parameters are bounded by largest
and smallest eigenvalues for each
sample size.
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Hierarchical parameter set

Suppose that the regression model is more complicated, namely that our model is

Hi = XiGi + Qi

where Gi is a second-order exchangeable sequence of parameter vectors such that

Gi = M(G) + Ri (G),

with E(M(G)) = E(G), Var(Ri (G)) = Γ − Σ, Var(M(G)) = Σ, with Γ and Γ − Σ pos.
def. We may then rewrite our model as

Hi = XiM(G) + Q∗
i ,

where Q∗
i = Qi + Ri (G) and Var(Q∗

i )=Wi + (Γ − Σ) = W ∗
i . This is functionally

identical to the previous model, and so can be treated in the same way.
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Design of next observation

Suppose that we may afford a further observation, Hn+1.

The variance explained by the extra observation is

VarD̄(G)−VarD̄∪Hn+1
(G) = ΣΩn[(Σ

−1 +Ωn)
−1 − (Σ−1 +Ωn +XT

n+1W
−1
n+1Xn+1)

−1]ΩnΣ,

with Σ = Var(G) and Ωn =
∑n

j=1 XT
j W−1

j
Xj .

Pleasing quadratic form, but most useful only when Wn+1 does not depend on Xn+1,
otherwise gets tricky.

Work to do ....
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Conclusions

Some re-inventing of the wheel - but using linear tools!

Leads to a clear(er) understanding of the adjustment through underlying separations

Lots of interesting (to me) issues still to explore

I Variance learning
I Teasing out of the null part of the residual space
I General representations of linear transformations and decompositions over graphs

M. Goldstein & D.A. Wooff (2007) Bayes linear statistics: theory and methods.
Chichester: Wiley.
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