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We are interested in estimating a contingency table.            

can be a complex object (complexity being due to the

number of variables, the number of variable categories, and the 

association structure among variables). The relation structure 

can help in finding an efficient estimator.
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Let P be a finite population of size N.
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Let S be a sample drawn from P according to a stratified 

sampling design with H strata                       , and 

corresponding survey weights wh.
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The Horvitz-Thompson estimator of             is
1 ky ,...,yθ

Here the design variables are merged to produce an adequate 

summary (in the sense of Rubin, 1985) that is a summary variable 

SD with as many states (H) as the strata.
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If H is larger than the 

number of different 

inclusion probabilities then 

the weights can be defined 

as wh/h, h=1,..., H  (Smith 

T.M.F., 1988)

for 1i h hw w i s ,h , ,H= ∈ = … unit sampling weight



Aim of this work:

Exploit information on the multivariate dependency structure 

to propose a class of estimators for  
1 ky ,...,yθ

Proposed tool:

Probabilistic Expert Systems (PES)Probabilistic Expert Systems (PES)



Why probabilistic expert systems?

Descriptive advantage (the dependence relationship among 

variables can be easily read from the graphical structure).

PES allows using easy and computationally efficient algorithms 

for evidence propagation.

PES help updating multivariate distributions given auxiliary 

information (integration of different sources; coherence between

estimates from different surveys)

Possibility to formalize post stratification via graphical models

PES are useful for evaluation of possible scenarios and for 

supporting decision makers



PES and sampling from finite population

Recall that SD is a categorical variable representing the stratified 

sampling design, i.e. with as many states as the strata

Conditionally on SD, the survey weights wh are hidden in the 

estimation of the marginal and conditional distributions of the 

variables of interest
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Assume a PES for SD, Y1,…, Yk – SD founder node

Therefore the PES based estimator (in a model based  

approach where the design variables are modelled together with 

the variables of interest) is
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θh is not sample based because it is known by design.
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The joint probability distribution of (SD, Y1,…, Yk ) is
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PES based estimators



Examples

Consider 3 variables of interest X, Y, Z

Applying the chain rule to (SD, X, Y, Z)

in model (a) we have

h,x,y ,z h x|h y|x,h z|x ,y ,hθ θ θ θ θ=
(a)

Suppose the PES is complete  

Marginalizing with respect to SD the estimator based on the 

complete model is
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It can be shown that coincides with the Horvitz-Thompson

estimator

( )a

x,y ,zθ̂

The Horvitz-Thompson estimator can be interpreted as a model 

based estimator relying on the complete model.
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On the use of the complete graphical model

Problem: possible

overparameterization

could be less efficient than the 

estimator based on the actual

association structure among the 

variables.

( a )
x ,y ,zθ̂

(a)

Proposed solution: given a PES structure, use the 

corresponding PES based estimator
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Examples of non complete models: 1

X, Y and Z are 

independent given SD.
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Examples of non complete models: 2

X and Y are independent

given SD but dependent

given Z.
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Examples of non complete models: 3
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There is no direct 

connection between SD 

and Y.



Some considerations
( )a

x,y ,zθ̂ , Horvitz-Thompson estimator, is consistent and unbiased

( )PES

x,y ,zθ̂ is consistent but not unbiased.

The lack of true parents effect is predominant

Concerning each factor               in the chain rule.( )PES

y|pa( y )θ̂

has a smaller variance compared to factors with a 

larger parent set; hence there is a gain in terms of variance 

of              with respect to 
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is less biased compared to factors with a smaller 
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Monte Carlo experiment

4 populations with 

10000 units have 

been generated 

according to 4

structures.

- X (2 categories) 

- Y (3 categories) 

- Z (2 categories)

From each population 1000 samples of size n=1000 have been 

drawn according to a stratified sampling design with 3 strata.

- SD has 3 categories

(a) (b)

(c) (d)



7000,10461046h=3

2000,29592959h=2

1000,59955995h=1

Sample size

nh

θhStratum

size Nh

Stratum

code h
Note that the 

sampling 

fraction is not 

proportional 

to stratum 

size

Monte Carlo experiment

The performances of the different estimators are measured and 

compared by the Monte Carlo estimates of the chi-square distance 

between the two joint distributions:
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Monte Carlo experiment

34.6d

32.7c

30.5b

37.5a

Pop ( )( a )
x,y ,z

ˆχ θ

13.229.332.6

1227.228.951.6

382.826.017.9

377.640.764.4

( )( b )
x,y ,z

ˆχ θ ( )( c )
x,y ,z

ˆχ θ ( )( d )
x,y ,z

ˆχ θ

Estimator based on (d) seems less robust than those based on (a) - (c)

(a) (b) (c) (d)



Monte Carlo experiment

(a) (b) (c) (d)

1.40.9246.50.06d

98.51.2171.30.10c

96.10.912.090.09b

96.313.773.80.04a

Bias(d)Bias(c)Bias(b)Bias(a)Pop

Estimators based on the correct model structure are approximately 

unbiased.
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Ratio of the Monte Carlo estimates of the chi-

square distance of the PES-estimators based 

on the correct structure



Definition of estimators in a model assisted framework

Problem:
If based on a structure where one or more variables of interest 

are not children of the sampling design node SD, PES-based

estimators are not robust to model miss-specification.

• The design variable SD is not directly modelled with the 

variables of interest

• Information on design variables is incorporated via 

survey weights

A possible solution?



Consider a PES for (Y1,…, Yk) with
( )1

1
k j j

k

y , ,y y |pa y
j

θ θ
=

= ∏…

The PES assisted estimator is ( )1
1

k j j

k

y , ,y y |pa y
j

ˆ ˆˆ ˆθ θ
=

= ∏…

PES assisted estimators

Where each factor is a weighted estimator of the conditional 

distributions
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The PES assisted estimator

referring to the complete 

model coincides with the 

Hotviz-Thompson estimator.
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x,y ,zθ̂=
The complete model is the only PES 

whose corresponding model based and 

model assisted estimators are “compatible”

Example: the complete graph



Monte Carlo experiment

( )d'

x ,y ,z x y|z z|x
ˆ ˆ ˆˆ ˆ ˆ ˆθ θ θ θ=

(d) (d’)

133.91227.2c

49.1382.8b

60.9377.6a

Pop ( )( )d'

x ,y ,z
ˆ̂χ θ( )( )d

x,y ,z
ˆχ θ

25.313.2d



Monte Carlo experiment

83.598.5c

57.596.1b

58.196.3a
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1.41.4d
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(d) (d’)



Structural learning
(maximum likelihood structural learning)

Given a PES for (SD, Y1,…, Yk) – SD root, the joint probability distribution is
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The maximum likelihood estimator of the parameters is the PES based estimator

Given a PES, the likelihood on the sample is

To estimate the structure we consider the likelihood as a function of PES; the 

penalised loglikelihood function
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Number of parameters in 

the model

The best PES is that with the highest score



Propagation and Poststratification

Suppose an informative shock occurs to variable X whose

updated frequency distribution is

1
qxN , q , ,Q

∗ = …
Q = n° of states of 

variable X

By propagating this information through the network, we

poststratify the sample with respect to X.

The original sample weights wi are updated so that the estimators

verify the new constraints on X. 
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Poststratification

� SD* strata are given by the Cartesian product of SD and X 

categories, i.e. (h, q), h = 1,…,H, q = 1, …,Q

� The units in the same category (h, q) have the same weight

( )h,q
w∗

From a graphical point of view, poststratification corresponds to

modify node SD into a new node SD* such that:

Poststratification

with respect to X

z

Y



Poststratification
(weights computation)
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By poststratification we update the joint distribution
q

h ,x
θ

new frequency of category xq of X
q

x
θ

∗

Units in the same category (h, q) of SD* have the same weight. Let nhq be the 

size of (h, q), hence
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PES structures for model assisted estimators

(a) (b) (c)

(d)


