Model based and model assisted estimators using probabilistic expert systems

Paola Vicard (Università Roma Tre)

Joint work with:
Marco Ballin and Mauro Scanu (ISTAT)

Durham, 2 July 2008

Let \mathcal{P} be a finite population of size N.
Let Y_{l}, \ldots, Y_{k} be k categorical variables of interest with distribution
$\begin{aligned} & \text { Parameter } \\ & \text { of interest }\end{aligned} \rightarrow \theta_{y_{1}, \ldots, y_{k}}=\sum_{i=1}^{N} \frac{I_{y_{1} \ldots y_{k}}\left(y_{i 1}, \ldots, y_{i k}\right)}{N}$
$I_{y_{1} \ldots y_{k}}\left(y_{i 1}, \ldots, y_{i k}\right)=\left\{\begin{array}{cc}1, & \text { if }\left(y_{i 1}, \ldots, y_{i k}\right)=\left(y_{1}, \ldots, y_{k}\right) \\ 0 & \text { otherwise }\end{array} \quad i=1, \ldots, N\right.$

We are interested in estimating a contingency table.
$\theta_{y_{1}, \ldots, y_{k}}$ can be a complex object (complexity being due to the number of variables, the number of variable categories, and the association structure among variables). The relation structure can help in finding an efficient estimator.

Let S be a sample drawn from P according to a stratified sampling design with H strata $s_{h}, h=1, \ldots, H$, and corresponding survey weights w_{h}.
The Horvitz-Thompson estimator of $\theta_{y_{1}, \ldots, y_{k}}$ is

$$
\begin{aligned}
& \hat{\theta}_{y_{1}, \ldots, y_{k}}=\sum_{i \in S} I_{y_{1} \ldots y_{k}}\left(y_{i 1}, \ldots, y_{i k}\right) \frac{w_{i}}{\sum_{i \in S} w_{i}}=\sum_{h=1}^{H} \frac{w_{h}}{N} \sum_{i \in s_{h}} I_{y_{1} \ldots y_{k}}\left(y_{i 1}, \ldots, y_{i k}\right) \\
& w_{i}=w_{h} \text { for } i \in s_{h}, h=1, \ldots, H
\end{aligned}
$$

Here the design variables are merged to produce an adequate summary (in the sense of Rubin, 1985) that is a summary variable $S D$ with as many states (H) as the strata.

$$
\theta_{h}=\sum_{i \in S} \frac{I_{w_{h}}\left(w_{i}\right) w_{i}}{\sum_{i \in S} w_{i}}=\frac{n_{h} w_{h}}{\sum_{h=1}^{H} n_{h} w_{h}} \quad h=1, \ldots, H
$$

If H is larger than the number of different inclusion probabilities then the weights can be defined as $w_{h} / h, h=1, \ldots, H$ (Smith T.M.F., 1988)

Aim of this work:

Exploit information on the multivariate dependency structure to propose a class of estimators for $\theta_{y_{1}, \ldots, y_{k}}$

Proposed tool:

Probabilistic Expert Systems (PES)

Why probabilistic expert systems?

Descriptive advantage (the dependence relationship among variables can be easily read from the graphical structure).

PES allows using easy and computationally efficient algorithms for evidence propagation.

I
PES help updating multivariate distributions given auxiliary information (integration of different sources; coherence between estimates from different surveys)

Possibility to formalize post stratification via graphical models
PES are useful for evaluation of possible scenarios and for supporting decision makers

PES and sampling from finite population

Recall that $S D$ is a categorical variable representing the stratified sampling design, i.e. with as many states as the strata

$$
\theta_{h}=\frac{n_{h} w_{h}}{\sum_{h=1}^{H} n_{h} w_{h}} \quad h=1, \ldots, H
$$

Conditionally on $S D$, the survey weights w_{h} are hidden in the estimation of the marginal and conditional distributions of the variables of interest

$$
\begin{aligned}
& \hat{\theta}_{y_{j} \mid l /}=\frac{\sum_{i \in s_{h}} I_{y_{j}}\left(y_{i j}\right) w_{h}}{\sum_{i \in s_{h}} w_{h}}=\frac{\sum_{i \in s_{h}} I_{y_{j}}\left(y_{i j}\right)}{n_{h}} \\
& \hat{\theta}_{y_{j} \mid h, Y_{l}=y_{l}}=\frac{\sum_{i \in s_{h}} I_{y_{j} y_{l}}\left(y_{i j}, y_{i l}\right)}{\sum_{i \in s_{h}} I_{y_{l}}\left(y_{i l}\right)}
\end{aligned}
$$

PES based estimators

Assume a PES for $S D, Y_{1}, \ldots, Y_{k}-S D$ founder node
The joint probability distribution of $\left(S D, Y_{1}, \ldots, Y_{k}\right)$ is

$$
\theta_{h, y_{1}, \ldots, y_{k}}=\theta_{h} \theta_{y_{1} \mid h} \theta_{y_{2} \mid h, y_{1}} \cdots \cdots \theta_{y_{k} \mid h, y_{1}, \ldots, y_{k-1}}=\theta_{h} \prod_{j=1}^{k} \theta_{y_{j} \mid p a\left(y_{j}\right)}
$$

Therefore the PES based estimator (in a model based

 approach where the design variables are modelled together with the variables of interest) is$$
\hat{\boldsymbol{\theta}}_{y_{1}, \ldots, y_{k}}=\sum_{h=1}^{H} \boldsymbol{\theta}_{h} \hat{\boldsymbol{\theta}}_{y_{1} \mid h} \hat{\boldsymbol{\theta}}_{y_{2} \mid y_{1}, h} \cdots \hat{\boldsymbol{\theta}}_{y_{k} \mid y_{1}, \ldots y_{k-1}, h}=\sum_{h=1}^{H} \boldsymbol{\theta}_{h} \prod_{j=1}^{k} \hat{\theta}_{y_{j} \mid p a\left(y_{j}\right)}
$$

$\longrightarrow \theta_{h}$ is not sample based because it is known by design.

Examples

Consider 3 variables of interest X, Y, Z
Suppose the PES is complete

Applying the chain rule to (SD, X, Y, Z) in model (a) we have

$$
\theta_{h, x, y, z}=\theta_{h} \theta_{x \mid h} \theta_{y \mid x, h} \theta_{z \mid x, y, h}
$$

Marginalizing with respect to $S D$ the estimator based on the complete model is

$$
\hat{\boldsymbol{\theta}}_{x, y, z}^{(a)}=\sum_{h=1}^{H} \boldsymbol{\theta}_{h} \hat{\boldsymbol{\theta}}_{x \mid h} \hat{\boldsymbol{\theta}}_{y \mid x, h} \hat{\boldsymbol{\theta}}_{z \mid x, y, h}
$$

It can be shown that $\hat{\theta}_{x, y, z}^{(a)}$ coincides with the Horvitz-Thompson estimator

$$
\begin{aligned}
\hat{\theta}_{x, y, z}^{(a)} & =\sum_{h=1}^{H} \theta_{h} \hat{\theta}_{x \mid h} \hat{\theta}_{y \mid x, h} \hat{\theta}_{z \mid x, y, h}= \\
& =\sum_{h=1}^{H} \frac{n_{h} w_{h}}{\sum_{h=1}^{H} n_{h} w_{h}} \sum_{i \in s_{h}} \frac{I_{x}\left(x_{i}\right)}{n_{h}} \sum_{i \in s_{h}} \frac{I_{x, y}\left(x_{i}, y_{i}\right)}{\sum_{i \in s_{h}} I_{x}\left(x_{i}\right)} \sum_{i \in s_{h}}^{\sum_{i \in s_{h}} \frac{I_{x, y, z}\left(x_{i}, y_{i}, z_{i}\right)}{I_{x, y}\left(x_{i}, y_{i}\right)}=} \\
& =\sum_{h=1}^{H} \frac{w_{h}}{\sum_{h=1}^{H} n_{h} w_{h}} \sum_{i \in s_{h}} I_{x, y, z}\left(x_{i}, y_{i}, z_{i}\right)
\end{aligned}
$$

The Horvitz-Thompson estimator can be interpreted as a model based estimator relying on the complete model.

On the use of the complete graphical model

Problem: possible overparameterization
$\hat{\theta}_{x, y, z}^{(a)}$ could be less efficient than the estimator based on the actual
 association structure among the variables.

Proposed solution: given a PES structure, use the corresponding PES based estimator

$$
\hat{\boldsymbol{\theta}}_{x, y, z}^{(P E S)}=\sum_{h=1}^{H} \boldsymbol{\theta}_{h} \hat{\boldsymbol{\theta}}_{x \mid p a(x)} \hat{\boldsymbol{\theta}}_{y \mid p a(y)} \hat{\boldsymbol{\theta}}_{z \mid p a(z)}
$$

Examples of non complete models: 1

X, Y and Z are independent given $S D$.
$\hat{\theta}_{x, y, z}^{(b)}=\sum_{h} \theta_{h} \hat{\theta}_{x \mid h} \hat{\theta}_{y \mid h} \hat{\theta}_{z \mid h}$
$=\sum_{h=1}^{H} \frac{n_{h} w_{h}}{\sum_{h} n_{h} w_{h}} \frac{\sum_{i \in s_{h}} I_{x}\left(x_{i}\right) \sum_{i \in s_{h}} I_{y}\left(y_{i}\right)}{n_{h}} \frac{\sum_{i \in s_{h}} I_{z}\left(z_{i}\right)}{n_{h}}$

Examples of non complete models: 2

X and Y are independent given $S D$ but dependent given Z.

$$
\begin{aligned}
& \hat{\theta}_{x, y, z}^{(c)}=\sum_{h} \theta_{h} \hat{\theta}_{x y h h} \hat{\theta}_{y l n} \hat{\theta}_{z l x, y, h} \\
& =\sum_{h=1}^{H} \frac{n_{h} w_{h}}{\sum_{h=1}^{H} n_{h} w_{h}} \sum_{i \in s_{h}} \frac{I_{x}\left(x_{i}\right)}{n_{h}} \sum_{i \in s_{h}} \frac{I_{y}\left(y_{i}\right)}{n_{h}} \sum_{i \in s_{h}} \frac{I_{x, y, z}\left(x_{i}, y_{i}, z_{i}\right)}{\sum_{i \in s_{h}} I_{x, y}\left(x_{i}, y_{i}\right)}
\end{aligned}
$$

Examples of non complete models: 3

There is no direct connection between $S D$ and Y.

$$
\begin{aligned}
& \hat{\boldsymbol{\theta}}_{x, y, z}^{(d)}=\sum_{h} \boldsymbol{\theta}_{x \mid h} \hat{\theta}_{z \mid x, h} \hat{\theta}_{y \mid z} \\
= & \sum_{h=1}^{H} \frac{n_{h} w_{(h)}}{\sum_{h=1}^{H} n_{h} w_{(h)}} \sum_{i \in s_{h}} \frac{I_{x}\left(x_{i}\right)}{n_{h}} \sum_{i \in s_{h}} \frac{I_{x, z}\left(x_{i}, z_{i}\right)}{\sum_{i \in s_{h}} I_{x}\left(x_{i}\right)}\left(\sum_{i \in s} \frac{I_{y, z}\left(y_{i}, z_{i}\right)}{\left.\sum_{i \in s_{h}} I_{z}\left(z_{i}\right)\right)}\right.
\end{aligned}
$$

Some considerations

$\hat{\theta}_{x, y, z}^{(a)}$, Horvitz-Thompson estimator, is consistent and unbiased $\hat{\theta}_{x, y, z}^{(P E S)}$ is consistent but not unbiased.

Concerning each factor $\hat{\theta}_{y \mid p a(y)}^{(P E S)}$, in the chain rule.
$\hat{\theta}_{y \mid p a(y)}^{(P E S)}$ has a smaller variance compared to factors with a larger parent set; hence there is a gain in terms of variance of $\hat{\boldsymbol{\theta}}_{y \mid p a(y)}^{(P E S)}$ with respect to $\hat{\boldsymbol{\theta}}_{y \mid p a(y)}^{(a)}$
$\hat{\theta}_{y \mid p a(y)}^{(P E S)}$ is less biased compared to factors with a smaller parent set.

The lack of true parents effect is predominant

Monte Carlo experiment

4 populations with 10000 units have been generated according to 4 structures.

From each population 1000 samples of size $\mathrm{n}=1000$ have been drawn according to a stratified sampling design with 3 strata.

Monte Carlo experiment

Stratum code h	Stratum size N_{h}	θ_{h}	Sample size n_{h}	Note that the sampling fraction is not
$h=1$	5995	0,5995	100	proportional
$h=2$	2959	0,2959	200	to stratum size
$h=3$	1046	0,1046	700	

The performances of the different estimators are measured and compared by the Monte Carlo estimates of the chi-square distance between the two joint distributions:

$$
\chi\left(\hat{\theta}_{x, y, z}^{(P E S)}\right)=\frac{1}{M} \sum_{m=1}^{M} \sum_{x, y, z} \frac{\left[\hat{\theta}_{x, y, z}^{(P E S), m}-\theta_{x, y, z}\right]^{2}}{\theta_{x, y, z}}
$$

[^0]
Monte Carlo experiment

Pop	$\chi\left(\hat{\theta}_{x, y, z}^{(a)}\right)$	$\chi\left(\hat{\theta}_{x, y, z}^{b}\right)$	$\chi\left(\hat{\theta}_{x, y, z}^{c}\right)$	$\chi\left(\hat{\theta}_{x, y, z}^{(d)}\right)$
a	37.5	64.4	40.7	377.6
b	30.5	17.9	26.0	382.8
c	32.7	51.6	28.9	1227.2
d	34.6	32.6	29.3	13.2

Estimator based on (d) seems less robust than those based on (a) - (c)

Monte Carlo experiment

Pop	Bias $_{(\mathrm{a})}$	$\operatorname{Bias}_{(\mathrm{b})}$	$\operatorname{Bias}_{(\mathrm{c})}$	$\operatorname{Bias}_{(\mathrm{d})}$
a	0.04	73.8	13.7	96.3
b	0.09	2.09	0.91	96.1
c	0.10	71.3	1.21	98.5
d	0.06	46.5	0.92	1.4

Estimators based on the correct model structure are approximately unbiased.

Monte Carlo experiment
 (probability estimates of each single cell)

Ratio of the Monte Carlo estimates of the chisquare distance of the $P E S$-estimators based on the correct structure

Problem:

If based on a structure where one or more variables of interest are not children of the sampling design node SD, PES-based estimators are not robust to model miss-specification.

A possible solution?

Definition of estimators in a model assisted framework

- The design variable $S D$ is not directly modelled with the variables of interest
- Information on design variables is incorporated via survey weights

PES assisted estimators

Consider a PES for $\left(Y_{l}, \ldots, Y_{k}\right)$ with $\theta_{y_{1}, \ldots, y_{k}}=\prod_{j=1}^{k} \theta_{y_{j} \mid p a\left(y_{j}\right)}$
The PES assisted estimator is $\hat{\hat{\theta}}_{y_{1}, \ldots, y_{k}}=\prod_{j=1}^{k} \hat{\hat{\theta}}_{y_{j} \mid p a\left(y_{j}\right)}$

Where each factor is a weighted estimator of the conditional distributions

$$
\hat{\theta}_{y_{j} \mid p a\left(y_{j}\right)}=\sum_{i=1}^{n} \frac{w_{i} I_{y_{j}, p a\left(y_{j}\right)}\left(y_{i j}, p a\left(y_{i j}\right)\right)}{\sum_{i=1}^{n} w_{i} I_{p a\left(y_{j}\right)}\left(p a\left(y_{i j}\right)\right)}
$$

Example: the complete graph

$=\sum_{i=1}^{n} \frac{w_{i} I_{x}\left(x_{i}\right)}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} \frac{w_{i} I_{x, y}\left(x_{i}, y_{i}\right)}{\sum_{i=1}^{n} w_{i} I_{x}\left(x_{i}\right)} \sum_{i=1}^{n} \frac{w_{i} I_{x, y, z}\left(x_{i}, y_{i}, z_{i}\right)}{\sum_{i=1}^{n} w_{i} I_{x, y}\left(x_{i}, y_{i}\right)}=$
$=\sum_{i=1}^{n} \frac{w_{i} I_{x, y, z}\left(x_{i}, y_{i}, z_{i}\right)}{\sum_{i=1}^{n} w_{i}}=$
The PES assisted estimator referring to the complete model coincides with the Hotviz-Thompson estimator.

The complete model is the only PES whose corresponding model based and model assisted estimators are "compatible"

Monte Carlo experiment

Pop	$\chi\left(\hat{\theta}_{x, y, z}^{(d)}\right)$	$\chi\left(\hat{\theta}_{x, y, z}^{\left(d^{\prime}\right)}\right)$
a	377.6	60.9
b	382.8	49.1
c	1227.2	133.9
d	13.2	25.3

$\hat{\boldsymbol{\theta}}_{x, y, z}^{\left(d^{\prime}\right)}=\hat{\hat{\theta}}_{x} \hat{\hat{\theta}}_{y \mid z} \hat{\hat{\theta}}_{z \mid x}$

Monte Carlo experiment

Pop	$\operatorname{Bias}\left(\hat{\theta}_{x, y, z}^{(d)}\right)$	$\operatorname{Bias}\left(\hat{\theta}_{x, y, z}^{\left(d^{\prime}\right)}\right)$
a	96.3	58.1
b	96.1	57.5
c	98.5	83.5
d	1.4	1.4

$$
\hat{\theta}_{x, y, z}^{\left(d^{\prime}\right)}=\hat{\hat{\theta}}_{x} \hat{\hat{\theta}}_{y \mid z} \hat{\hat{\theta}}_{z \mid x}
$$

Structural learning

(maximum likelihood structural learning)

Given a PES for $\left(S D, Y_{1}, \ldots, Y_{k}\right)-S D$ root, the joint probability distribution is

$$
\theta_{h, y_{1}, \ldots, y_{k}}=\theta_{h} \prod_{j=1}^{k} \theta_{y_{j} \mid p a\left(y_{j}\right)}
$$

Given a PES, the likelihood on the sample is

$$
L\left(\theta_{h y_{1}, \ldots, y_{k}} ; P E S\right)=\prod_{i=1}^{n} \theta_{h}^{w_{i}} \prod_{j=1}^{k} \theta_{y_{j} \mid \operatorname{pa}\left(y_{j}\right)}^{I_{\left(y_{j} \mid \operatorname{lo}\left(y_{j}\right)\right)}}
$$

The maximum likelihood estimator of the parameters is the PES based estimator
To estimate the structure we consider the likelihood as a function of PES; the penalised loglikelihood function
$s(P E S)=\log L\left(\hat{\theta}_{h y_{1} \ldots y_{k}} ; P E S\right)-\frac{\log n}{2} Q$

Number of parameters in the model

The best PES is that with the highest score

Propagation and Poststratification

Suppose an informative shock occurs to variable X whose updated frequency distribution is

$$
\begin{array}{ll}
N_{x_{q}}^{*}, \quad q=1, \ldots, Q \quad \begin{array}{l}
Q=\mathrm{n}^{\circ} \text { of states of } \\
\text { variable } X
\end{array}
\end{array}
$$

By propagating this information through the network, we poststratify the sample with respect to X.
The original sample weights w_{i} are updated so that the estimators verify the new constraints on X.

$$
w_{i}^{*}=w_{i} \frac{N_{x_{q}}^{*}}{\sum_{i} w_{i} I_{x_{i}}(q)}=w_{i} \frac{N_{x_{q}}^{*}}{\hat{N}_{x_{q}}}, \quad i: I_{x_{i}}(q)=1, \quad q=1, \ldots, Q
$$

Poststratification

From a graphical point of view, poststratification corresponds to modify node $S D$ into a new node $S D^{*}$ such that:
$>S D^{*}$ strata are given by the Cartesian product of $S D$ and $X w_{(h, q)}^{*}$ categories, i.e. $(h, q), h=1, \ldots, H, q=1, \ldots, Q$
$>$ The units in the same category (h, q) have the same weight

Poststratification (weights computation)

By poststratification we update the joint distribution $\theta_{h, x_{q}}$

$$
\begin{aligned}
& \theta_{h, x_{q}}^{*}=\theta_{h \mid x_{q}}-\sqrt[\theta_{x_{q}}^{*}]{*}=\quad \theta_{x_{q}}^{*} \text { new frequency of category } x_{q} \text { of } X \\
& =\frac{\theta_{h} \theta_{x_{q} \mid h}}{\sum_{h=1}^{H} \theta_{h} \theta_{x_{q} \mid h}} \theta_{x_{q}}^{*}=\frac{n_{h} w_{h}}{\sum_{h=1}^{H} n_{h} w_{h}} \frac{n_{h q}}{n_{h}} \frac{\theta_{x_{q}}^{*}}{\hat{\theta}_{x_{q}}}, q=1, \ldots, Q \text { e } h=1, \ldots, H
\end{aligned}
$$

Units in the same category (h, q) of $S D^{*}$ have the same weight. Let $n_{h q}$ be the size of (h, q), hence

$$
w_{(h, q)}^{*}=\frac{\sum_{h=1}^{H} n_{h} w_{h}}{n_{h q}} \theta_{h, x_{q}}^{*}=w_{h} \frac{\theta_{x_{q}}^{*}}{\hat{\theta}_{x_{q}}}, q=1, \ldots, Q \text { e } h=1, \ldots, H
$$

PES structures for model assisted estimators

[^0]: $\mathrm{M}=\mathbf{1 0 0 0}=$ number of Montecarlo replications

