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The Big Picture

Given a directed acyclic graph G, two ways to describe a
Bayesian Network:

Parametrically (recursive factorization of joint distribution)
Conditional Independence Constraints

Theorem
A probability density function f factorizes according to G if and
only if f satisfies the conditional independence statements
implied by G.

Question
What happens when some of the random variables in the
Bayes Net are hidden? What constraints replace conditional
independence constraints?



Bayesian Networks

G directed acyclic graph (DAG)
V (G) = [n] := {1,2, . . . ,n}
i → j ∈ E(G) must satisfy i < j .
pa(i) = {k | k → i ∈ E(G)}
Joint density f (x) belongs to Bayes Net associated to G iff

f (x) =
n∏

i=1

fi(xi |xpa(i))

where fi(xi |xpa(i)) is the conditional density of Xi given its
parents Xpa(i).



Gaussian Bayesian Networks

Proposition
For Gaussian random variables, the parametrization:

f (x) =
n∏

i=1

fi(xi |xpa(i))

is equivalent to the linear parametrization

Xi =
∑

j∈pa(i)

λjiXj + Zi

where Zi ∼ N (νi , ψ
2
i ) and λji ∈ R .



The Trek Rule

A trek from i to j is a simple path in G with no collider
k → m, l → m.
Every trek T has a topmost element top(T ).
T (i , j) is set of all treks from i to j .
For each i ∈ [n] get variance parameter ai .
For each edge k → l in G get regression parameter λkl .

Proposition

X ∼ N (µ,Σ) in Bayes Net associated to G iff Σ satisfies:

σij =
∑

T∈T (i,j)

atop(T )

∏
k→l∈T

λkl

with λkl ∈ R and ai = Var[Xi ] is restricted.



The trek rules gives a polynomial parametrization

φG : RV (G) × RE(G) −→ R(n+1
2 )

(a, λ) 7→ Σ

Let
MG ⊆ PD(n)

be the set of all covariance matrices that come from the Bayes
Net associated to G (roughly, the image of φG).

Definition
Let

IG = {p ∈ R[σij | 1 ≤ i ≤ j ≤ n] | p(Σ) = 0 ∀Σ ∈ MG}

be the vanishing ideal of the Gaussian Bayesian network.



Example of the Trek Rule

1 2

3 4

X1 = Z1, X2 = λ12X1 + Z2, X3 = λ13X1 + Z3, X4 = λ24X2 +λ34X3 + Z4

σ11 = a1 σ12 = a1λ12 σ13 = a1λ13 σ14 = a1λ12λ24 + a1λ13λ34
σ22 = a2 σ23 = a1λ12λ13 σ24 = a2λ24 + a1λ12λ13λ34

σ33 = a3 σ34 = a3λ34 + a1λ13λ12λ24
σ44 = a4

IG is the complete intersection of a quadric and a cubic:

IG = 〈σ11σ23 − σ13σ21, σ12σ23σ34 + σ13σ24σ23 + · · · 〉 .

IG =
〈
|Σ12,13|, |Σ123,234|

〉



Markov Properties of the DAG

Proposition (Moralization/d-separation)

XA⊥⊥XB|XC holds for Bayes Net associated to G if and only if C
separates A and B in the moral graph (GAn(A∪B∪C))

m.

Is X1⊥⊥X4|X3?
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Theorem
A probability density is in the Bayes Net model of G if and only
if it satisfies all CI statements implied by G.



Conditional Independence is an Algebraic Condition

Proposition

If X ∼ N (µ,Σ) then XA⊥⊥XB|XC if and only if all
(#C + 1)× (#C + 1) minors of ΣA∪C,B∪C are zero.

For each DAG G get a conditional independence ideal

CIG =
〈
(#C + 1) minors of ΣA∪C,B∪C : XA⊥⊥XB|XC holds for G

〉
.

Corollary

V (CIG) ∩ PD(n) = V (IG) ∩ PD(n) = MG



Question
Is it always true that CIG = IG?
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3 4

X2⊥⊥X3|X1 and X1⊥⊥X4|{X2,X3}

IG = CIG =
〈
|Σ12,13|, |Σ123,234|

〉
Theorem (S-, 2007)
If T is a tree then IT = CIT .
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IG = CIG +
〈
|Σ13,45|

〉
Question
Where do these extra determinantal constraints come from?

Question
Why are they interesting?



Why Should We Care? Hidden Variables

Partition [n] = H ∪O.
H hidden variables, O observed variables.
Density of observed variables is just fO(xO).

Proposition

IG,O := {p ∈ R[σij | i , j ∈ O] : p(ΣO,O) = 0 ∀Σ ∈ MG}
= IG ∩ R[σij : i , j ∈ O]

1 2

3 4 5

IG,1345 =
〈
σ13, |Σ13,45|

〉



A Special Grading

Definition
H is upstream from O if there are no edges o → h such that
o ∈ O and H ∈ h.

H

O

Grading: degσij = (1,#({i} ∩O) + #({j} ∩O)).

Proposition (S-, 2007)
If H is upstream from O, IG is homogenous with respect to the
upstream grading. In particular, every homogeneous
generating set of IG contains a generating set of IG,O.



Consequences for Trees

Let T be a directed tree (no colliders i → k , j → k ) and suppose
that O is the set of leaves of T . JT = IT ,O in this case.

1 2 3 4

Corollary
For a directed tree JT is generated by tetrad constraints:

JT =
〈
σijσkl − σilσjk : {i , k} splits from {j , l}

〉
For tree above:

σ13σ24 − σ14σ23



What Causes Extra Constraints? Tetrads and Beyond

Theorem (Spirtes, Glymour, Scheines)

A tetrad |Σij,kl | ∈ IG (i.e. is zero for every covariance matrix in
MG) if and only if there is a choke point c between {i , j} and
{k , l} in G.
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4 is a choke point between {1,3} and {4,5}.

1 2 3 4

c

c is NOT a choke point between {1,2} and {3,4}



Definition
Let A, B, C, and D be four subsets of V (G) (not necessarily
disjoint). We say that (C,D) t-separates A from B if every trek
from A to B passes through either a vertex in C on the A-side of
the trek, or a vertex in D on the B-side of the trek.

Proposition
A set C d-separates A from B in G if and only if there is a
partition C = C1 ∪C2 such that (C1,C2) t-separates A ∪C from
B ∪ C.



Theorem (S-Talaska)

The matrix ΣA,B has rank ≤ d if and only if there are C,D ⊂ [n]
with #C + #D ≤ d such that (C,D) t-separate A from B.

Proof.
Extend the parametrization to treks with loops.
|ΣA,B| is a determinant of path polynomials. Devise a
variant of the Gessel-Viennot Theorem to expand |ΣA,B|
combinatorially.
Deduce that |ΣA,B| = 0 if and only if every trek system has
a sided crossing.
Apply Max-Flow-Min-Cut theorem to deduce a blocking
characterization.
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We have |Σ13,45| ∈ IG because (∅, {4}) t-separate {1,3} from
{4,5}.
Could also be deduced from CI statements {1,3}⊥⊥5|{2,4}
and {1,3}⊥⊥2.

σ12 σ14 σ15
σ22 σ24 σ25
σ23 σ34 σ35
σ24 σ44 σ45

 =


0 σ14 σ15
> 0 σ24 σ25
0 σ34 σ35
σ24 σ44 σ45
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We have |Σ13,45| ∈ IG because (∅, {4}) t-separate {1,3} from
{4,5}.
Could also be deduced from CI statements {1,3}⊥⊥5|{2,4}
and {1,3}⊥⊥2.

σ12 σ14 σ15
σ22 σ24 σ25
σ23 σ34 σ35
σ24 σ44 σ45

 =


0 σ14 σ15
> 0 σ24 σ25
0 σ34 σ35
σ24 σ44 σ45





“Spiders”

A B

c

({c}, {c}) t-separates A from B.
ΣA,B has rank at most 2.



Questions and Open Problems

Extend t-separation characterization of determinantal
constraints to ancestral graphs and summary graphs.
What does t-separation mean for general (non-Gaussian)
Bayesian networks?
How to determine general descriptions of other hidden
variable constraints?
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σ22 σ22 σ23 σ24
σ23 σ23 σ33 σ34
0 σ24 σ34 σ44
0 σ25 σ35 σ45




