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Introduction: Bayesian networks

Bayesian networks (BNs) are popular (graphical) models in the area of
probabilistic reasoning. Most working probabilistic expert systems are
based on the mathematical theory related to Bayesian networks.

The motivation for this talk is learning Bayesian network structure from
data by the method of maximization of a quality criterion.

By a quality criterion, also named a score metric or a score, is meant a
special real function Q of the BN structure, usually represented by a
graph G , and of the database D. The value Q(G ,D) should quantify how
the BN structure given by G fits the database D.

There are two important technical requirements on a quality criterion Q
brought in connection with the maximization problem. One of them is
that Q should be score equivalent (Bouckaert 1995), the other is that Q
should be decomposable (Chickering 2002).
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Introduction: algebraic approach

The basic idea of an algebraic approach to learning BN structure
(Studený 2005) is to represent both the BN structure and the database
by a real vector.

The algebraic representative of the BN structure given by an acyclic
directed graph G is a certain integral (= integer-valued) vector uG ,
called the standard imset (for G ).

The crucial point is that every score equivalent and decomposable criterion
Q is an affine function (= linear function plus a constant) of the standard
imset. More specifically, one has

Q(G ,D) = sQD − 〈t
Q
D , uG 〉 , where sQD ∈ R,

tQD is a real vector of the same dimension as uG and 〈∗, ∗〉 denotes the

scalar product. The vector tQD is named the data vector (relative to Q).
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Introduction: Bayesian criteria

There are different methodological approaches to the derivation of quality
criteria (Cowell et. al. 1999; chapter 11):

maximized likelihood −→ classic information criteria AIC, BIC

predictive assessment −→ prequential validation (Dawid 1984)

marginal likelihood −→ Bayesian approach

This talk deals with the Bayesian approach. A part of it is an attempt to
reformulate (in mathematical terms) the assumption(s) on which the
Bayesian approach is based (Heckerman et. al. 1995). The resulting
criterion is the logarithm of the marginal likelihood (LML), also named
BDe metric (BDe = Bayesian Dirichlet equivalence).

This allows one to give a mathematical formula for the data vector relative
to the LML criterion in terms of the hyper-potential for Dirichlet priors.

The formulas for the data vectors relative to AIC and BIC were derived earlier.
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Introduction: geometric view

Another aim of this talk is to emphasize the geometric interpretation:

the set of all standard imsets over a fixed set of variables N can be viewed
as the set of points in the corresponding Euclidean space.

A recent result (Studený Vomlel 2008) says that the set of standard imsets
is the set of vertices (= extreme points) of a certain polytope.

Therefore, once one succeeds to describe the above mentioned polytope in
the form of a (bounded) polyhedron, one gets a classic task of linear
programming: to maximize/minimize a linear function over a polyhedron.

This seems to be an interesting (and promising ?) research topic . . .

The idea of possible use of the simplex method (Schrijver 1986) motivated
the concept of the geometric neighborhood for standard imsets. Its
comparison with common inclusion neighborhood led to an example of the
failure of the “standard” GES algorithm (Chickering 2002).
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Basic concepts: Bayesian network structure

One of possible definitions of a (discrete) Bayesian network is that it is a
pair (G ,P), where G is an acyclic directed graph over a (non-empty finite)
set of nodes (= variables) N and P a discrete probability distribution over
N that is Markovian with respect to G . (Lauritzen 1996)

Having fixed individual (finite) sample spaces Xi for variables i ∈ N, the
corresponding (BN) statistical model is the class of all positive probability
distributions P on XN ≡

∏
i∈N Xi that are Markovian with respect to G .

To avoid trivial mistakes and silly omissions, throughout this talk we
assume |Xi | ≥ 2 for every i ∈ N.

To name the shared features of distributions in this class one can use the
phrase BN structure.
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Basic concepts: equivalence of graphs

It may happen that two different graphs over N describe the same BN
structure.

Two acyclic directed graphs over N will be named Markov equivalent if
then define the same BN statistical model.

If |Xi | ≥ 2 for every i ∈ N then this is equivalent to the condition they are
independence equivalent.

Verma and Pearl (1991) gave classic graphical characterization of
independence equivalence: two acyclic directed graphs G and H over N
are independence equivalent iff they have the same underlying undirected
graph and immoralities.
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Basic concepts: quality criterion

Data are assumed to have the form of a complete database D : x1, . . . , xd

of the length d ≥ 1, that is, of a sequence of elements of XN .
Statisticians may prefer the term a sample of the size d instead.

Provided the individual sample spaces Xi for i ∈ N are fixed let
DATA (N, d) denote the set of all databases over N of the length d .

Moreover, let DAGS (N) denote the collection of all acyclic directed
graphs over N.

Definition (quality criterion)

Quality criterion or a score (for learning BN structure) is a real function

Q(G ,D) on DAGS (N)× DATA (N, d).

There are various methods to derive quality criteria. Most of them come from the

idea of the BN statistical model as a parameterized class of distributions.
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Basic concepts: score equivalent criterion

Since the aim of the learning procedure is to get the BN structure it is
quite natural to require that the quality criterion satisfies the following
condition:

Definition (score equivalent criterion)

A quality criterion Q will be named score equivalent if, for every
D ∈ DATA (N, d), d ≥ 1, one has

Q(G ,D) = Q(H,D) whenever G ,H ∈ DAGS (N)

are independence equivalent.

Most quality criteria used in practice are score equivalent.

M. Studený (Prague) On Bayesian criteria for learning BNs July 1, 2008 10 / 39



Basic concepts: decomposable criterion

Definition (decomposable criterion)

A criterion Q will be called decomposable if there exists a collection of
functions qi |B : DATA({i} ∪ B, d)→ R where i ∈ N, B ⊆ N \ {i}, d ≥ 1
such that, for every G ∈ DAGS (N), D ∈ DATA (N, d) one has

Q(G ,D) =
∑

i∈N qi |paG (i)(D{i}∪paG (i))

where DA : x1
A, . . . , x

d
A denotes the projection of D to the marginal space

XA ≡
∏

i∈A Xi for ∅ 6= A ⊆ N and paG (i) ≡ {j ∈ N; j → i} the set of
parents of i ∈ N.

All criteria used in practice are decomposable.
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Algebraic approach: imset

N ... a finite set of variables

P(N)≡ {A; A ⊆ N} ... the power set of N

Definition (imset)

An imset u (over N) is a function u : P(N) 7→ Z.

We will regard an imset over N as a vector whose components are integers
and are indexed by subsets of N.

Actually, any real function m : P(N)→ R will be interpreted as a (real)
vector in the same way. The symbol 〈m, u〉 will then denote the scalar
product of two vectors of this type:

〈m, u〉 ≡
∑
A⊆N

m(A) · u(A) .
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Algebraic approach: elementary imset

Given A ⊆ N, the symbol δA will denote a special imset given by:

δA(B) =

{
1 if B = A,
0 if B 6= A,

for B ⊆ N.

Definition (elementary imset)

By an elementary imset is meant an imset of the form

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C ,

where C ⊆ N and a, b ∈ N \ C are distinct.

In our framework, this imset encodes an elementary conditional
independence statement a ⊥⊥ b |C .
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Algebraic approach: standard imset

Definition (Standard imset)

The standard imset for an acyclic directed graph G is given by the formula

uG = δN − δ∅ +
∑
a∈N

{δpaG (a) − δ{a}∪paG (a)} .

Here paG (a) ≡ {b ∈ N; b → a in G} denotes the set of parents of the node a.

The standard imset is a uniquely determined representative of the Bayesian
network structure.

Since every standard imset over N has at most 2 · |N| non-zero values, it
can be represented in the memory of a computer with polynomial
complexity with respect to |N|.
A common graphical representative is so-called essential graph.
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Example: the case of three variables
In the case of 3 variables one has 11 standard imsets and they
break into 5 types.

B

CA

B

A C

B

CA

B

CA

B

A C

B

CA

B

CA

B

A C

B

CA

B

B

CA

A C

The zero imset corresponds to the complete graph.

Six elementary imsets break into two types, namely u〈a,b|∅〉 and u〈a,b|c〉; the
respective essential graphs are a→ c ← b and a −− c −− b.

Three “semi-elementary” imsets of the form u〈a,bc|∅〉 ≡ δabc + δ∅ − δa − δbc define
one type. The corresponding essential graph has just one edge.

The imset δN −
∑

i∈N δi + 2 · δ∅ corresponds to the empty essential graph.
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Parameterization of a discrete BN model: convention

For every A ⊆ N, we fix a total ordering of configurations for A.

Definition (Notational convention)

The symbol i will be a generic symbol for variables/nodes.

Moreover, r(i) will denote |Xi |, that is, the number of node

configurations for i and, given G ∈ DAGS (N), q(i ,G ) will denote

|XpaG (i)|, that is, the number of parent configurations for i .

The symbol k will serve as a generic symbol for a code of a node

configuration. Specifically, if y 1
i , y

2
i , . . . , y

r(i)
i is the fixed ordering of

Xi , then k ∈ {1, . . . , r(i)} encodes the k-th node configuration yk
i .

The symbol j will serve as a generic symbol for a code of a parent

configuration. If z1
i , . . . , z

q(i ,G)
i is the fixed ordering of Xpa(i), then

j ∈ {1, . . . , q(i ,G )} encodes the j-th parent configuration z j
i .

M. Studený (Prague) On Bayesian criteria for learning BNs July 1, 2008 16 / 39



Parameterization of a BN model: parameter space

The elementary parameters in the parameterization correspond to triplets:

[ variable = node︸ ︷︷ ︸
i

, parent configuration︸ ︷︷ ︸
j

, node configuration︸ ︷︷ ︸
k

].

This is concordance with the mentioned notation convention:

θijk , i ∈ N, j = 1, . . . , q(i ,G ), k = 1, . . . , r(i) .

Definition (Parameter space)

Given G ∈ DAGS (N), the parameter space is

ΘG =
∏
i∈N

q(i ,G)∏
j=1

Θ(ij) where Θ(ij) = {[θijk ]
r(i)
k=1 ; θijk > 0,

r(i)∑
k=1

θijk = 1 }.
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Parameterization of a BN model: formula for density

The interpretation of the elementary parameter θijk is the value of the
conditional probability pθ

i |paG (i) for the node configuration encoded by k

given the parent configuration encoded by j .

Definition (Formula for the theoretical distribution)

Given G ∈ DAGS (N), and a parameter vector θ ∈ ΘG the density of the
corresponding Markovian distribution is

pθ(x) =
∏
i∈N

θi j(i ,x) k(i ,x)

where j(i , x) denotes the code of xpaG (i) and k(i , x) the code of xi .
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Parameterization of a BN model: well-known facts

Theorem (Parameterization)

The mapping θ 7→ pθ is a one-to-one mapping from ΘG onto the class of
strictly positive distributions on XN that are Markovian with respect to G .

Another important fact is that { pθ; θ ∈ ΘG} is an exponential family:

pθ(x) = c(θ) · u(x) · exp (
m∑

s=1

qs(θ) · ts(x) ) ,

where

m =
∑

i∈N

∑q(i ,G)
j=1

∑r(i)
k=1 1 =

∑
i∈N r(i) · q(i ,G ),

c(θ) = 1, u(x) = 1,

qs(θ) = ln θijk for (ijk) ∼ s,

ts(x) =

{
1 if xpaG (i) = z j

i and xi = yk
i ,

0 otherwise,
for (ijk) ∼ s.
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Parameterization of a BN model: likelihood function

Definition (Database convention)

Given D ∈ DATA (N, d), we introduce notation (for marginal counts):

dijk = |{`; 1 ≤ ` ≤ d , (x`)paG (i) = z j
i & (x`)i = yk

i }|

dij = |{`; 1 ≤ ` ≤ d , (x`)paG (i) = z j
i }| ≡

r(i)∑
k=1

dijk .

Theorem (Formula for the likelihood)

∀θ ∈ ΘG , ∀D ∈ DATA (N, d)

L(θ,D) =
∏
i∈N

q(i ,G)∏
j=1

r(i)∏
k=1

(θijk)dijk .
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Bayesian terminology: basic input components

(X,X ) . . . sample space here X = XN × . . .× XN︸ ︷︷ ︸
d times

= DATA (N, d)

(Θ,A) . . . parameter space here Θ ≡ ΘG

{Pθ; θ ∈ Θ} . . . sampling probabilities
typically given by densities p(x |θ) w.r.t. a “standard” dominating
measure on (X,X )
here p(x |θ) = L(θ,D) is the above mentioned likelihood function

What is specific in the Bayesian approach is this:

π(θ) . . . prior density
w.r.t. a “standard” (σ-finite) dominating measure on (Θ,A)
here π(θ) will be a product of Dirichlet distributions

These components establish a Bayesian experiment.
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Bayesian terminology: output components

From mathematical point of view, the Bayesian experiment is characterized
by the (joint) distribution Π on (Θ× X,A×X ) with the density

Π(θ, x) = π(θ) · p(x |θ) for θ ∈ Θ, x ∈ X .

The point is that Π has a dual decomposition:

Π(θ, x) = p(x) · π(θ|x) for θ ∈ Θ, x ∈ X ,

where

p(x) is the marginal density of Π on X,
sometimes called the predictive probability.
Here, it will be called the marginal likelihood for it is obtained by
integrating the likelihood L(θ,D) ≡ p(x |θ) after the prior π(θ).

{π(θ|x); x ∈ X} is the system of posterior densities.

M. Studený (Prague) On Bayesian criteria for learning BNs July 1, 2008 22 / 39



Bayesian terminology: conjugate family

Definition (Conjugate family)

A system S of probability distributions on the parameter space (Θ,A) will
be called a conjugate family for a system of probability distributions T on
the sample space (X,X ) if the following condition holds:

whenever the prior is in S and sampling probabilities are in T ,
then every posterior is in S.

Formally:

π ∈ S & [∀θ ∈ Θ p(∗|θ) ∈ T ] ⇒ [ ∀ x ∈ X π(∗|x) ∈ S ] .
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Dirichlet distribution: parameters and hyperparameters

Natural conjugate family for (the class of) discrete (strictly positive)
sampling distributions is the class of Dirichlet distributions.

Definition (Parameter space and hyperparameters)

Consider the parameter space for sampling distributions with r ≥ 2
outputs:

Θ[r ] = {[θk ]rk=1 ; θk > 0,
r∑

k=1

θk = 1 }.

It will serve as the sample space for the class of Dirichlet distributions.
The (hyper)parameters for these distributions then belong to the set:

(Ξ)[r ] = {[αk ]rk=1 ; αk > 0 }.
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Dirichlet distribution: formula for the density

Definition (Formula for density of Dirichlet distribution)

The formula for Dirichlet density on Θ[r ], r ≥ 2 is as follows:

∀α ≡ [αk ]rk=1, αk > 0 f ([θ1, . . . , θr ]) =
Γ(
∑r

k=1 αk)∏r
k=1 Γ(αk)

·
r∏

k=1

(θk)αk−1 ,

where Γ denotes the Gamma fuction Γ(α) =
∫ +∞

0 e−t · tα−1 dt for α > 0.
Given a vector of hyperparameters α = [αk ]rk=1 ∈ (Ξ)[r ] the

corresponding Dirichlet distribution will be denoted by D([αk ]rk=1) .

Warning The density is not with respect to (r − 1)-dimensional Lebesgue measure on
the affine space {[θk ]rk=1 ;

∑r
k=1 θk = 1 }, but with respect to its 1√

r
-multiple! This is

the image of the Lebesgue measure on Rr−1 by any “lifting”:

∀ i ∈ {1, . . . , r} [θk ]k∈{1,...,r}\{i} 7→ ([θk ]k∈{1,...,r}\{i}, θi ≡ 1−
r∑

k=1,k 6=i

θk) .
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Bayesian approach: summarized assumption

Definition (Compatibility assumption)

There exists a (hyper)potential α : XN → (0,+∞) such that, for every

G ∈ DAGS (N), the prior on the parameter space ΘG (for the
corresponding BN model) is determined as follows:

Hyperparameters (for local Dirichlet priors) are given by
marginalizing the potential α:

∀ i ∈ N ∀ j = 1, . . . , q(i ,G ) ∀ k = 1, . . . , r(i)

αG
ijk =

∑
{α(x) ; x ∈ XN , xi∪paG (i) = [yk

i , z
j
i ] }

Global prior is the product of these local Dirichlet priors:

πG
α =

∏
i∈N

q(i ,G)∏
j=1

D([αG
ijk ]

r(i)

k=1
) .

M. Studený (Prague) On Bayesian criteria for learning BNs July 1, 2008 26 / 39



Bayesian approach: the definition of the criterion

Definition (LML criterion)

Under the compatibility assumption the LML criterion corresponding to a
hyper-potential α : XN → (0,+∞) is the logarithm of the marginal
likelihood:

LML[α] (G ,D) = ln

∫
ΘG

L(θ,D) dπG
α (θ)

for every G ∈ DAGS (N), D ∈ DATA (N, d), d ≥ 1.

There is a direct (closed-form) formula for this criterion in terms of
hyperparameters (of local Dirichlet priors) and marginal counts:

LML[α] (G ,D) =
∑
i∈N

q(i ,G)∑
j=1

{ ln
Γ(αG

ij )

Γ(αG
ij + dij)

−
r(i)∑
k=1

ln
Γ(αG

ijk)

Γ(αG
ijk + dijk)

}

for every G ∈ DAGS (N), D ∈ DATA (N, d), d ≥ 1.
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Bayesian approach: LML data vector definition

Definition (Data vector for LML)

Let α : XN → (0,+∞) be a hyperpotential for priors and D : x1, . . . , xd a
database of the length d ≥ 1 (= a sample of the size d).
Given A ⊆ N, let αA denotes the marginal potential of α for A and dA

the marginal contingency table corresponding to D:

αA(y) =
∑
{α(x) ; x ∈ XN , xA = y } for y ∈ XA ,

dA(y) = |{`; 1 ≤ ` ≤ n, (x`)A = y }| for y ∈ XA .

Then a (non-standardized) data vector corresponding to α can be
introduced as follows:

t
LML[α]
D (A) =

∑
y∈XA

ln
Γ(αA(y) + dA(y))

Γ(αA(y))
for any A ⊆ N .
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Bayesian approach: the required formula

Theorem (Formula for the LML criterion)

Under the compatibility assumption, the LML criterion is score equivalent
and decomposable. Moreover, it can be expressed in the form

LML[α] (G ,D) = s
LML[α]
D − 〈tLML[α]

D , uG 〉 ,

where uG is the standard imset for G , t
LML[α]
D the LML data vector

introduced above and

s
LML[α]
D = t

LML[α]
D (N)− t

LML[α]
D (∅) .

Remark Given a criterion Q and D ∈ DATA (N, d), d ≥ 1, the corresponding

data vector tQD is not uniquely determined. However, it is unique under additional

standardization conditions.

In particular, the problem of maximization of LML is equivalent to the task

to minimize a linear function u 7→ 〈tLML[α]
D , u〉 on the respective domain.
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Convex geometry: polytopes and polyhedrons
Consider the Euclidean space RK , where K is a non-empty finite set.

Definition (polytope)

A polytope in RK is the convex hull of a finite set of points in RK .
Its dimension dim(P) is the dimension of its affine hull.

The least set of points whose convex hull is a polytope P is the set of its
extreme points.

Definition (polyhedron)

By an affine half-space in RK is meant a set

H+ = {x ∈ RK ; 〈v, x〉 ≤ α} ,

where 0 6= v ∈ RK is a non-zero vector and α ∈ R. A polyhedron is the
intersection of finitely many affine half-spaces. It is bounded if it does not
contain a ray {x + α ·w; α ≥ 0} for any x,w ∈ RK , w 6= 0.
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Convex geometry: Weyl-Minkowski theorem

Theorem (Weyl-Minkowski theorem)

A set P ⊆ RK is a polytope iff it is a bounded polyhedron.

A further important observation is that if P is a full-dimensional polytope
then its irredundant description in the form of a polyhedron is unique.

Provided that the polytope is rational, that is, it is the convex hull of a
finite subset of QK , the respective (irredundant) half-spaces are given by
rational vectors and constants.

There is a geometric concept of a face of a polytope (whose definition is
omitted in this talk). Faces can be classified by their dimension. Faces of
dimension 0 are vertices. Important faces are (geometric) edges, faces of
dimension 1. These are special line-segments connecting vertices.
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Geometric view: standard imsets are vertices of a polytope

Theorem (Geometric view on standard imsets)

The set S of standard imsets over N is the set of vertices of a rational
polytope P ⊆ RP(N). The dimension of the polytope is 2|N| − |N| − 1.

Now, recall that every score equivalent and decomposable criterion Q
necessarily has the form:

Q(G ,D) = sQD − 〈t
Q
D , uG 〉 for any G ∈ DAGS (N),D ∈ DATA (N, d),

where sQD ∈ R and tQD : P(N)→ R do not depend on G .

The consequence is as follows: the task to maximize Q over BN structures
(= standard imsets) is equivalent to the task to minimize a linear function
u 7→ 〈tQD , u〉 over the above mentioned polytope.
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Geometric view: neighborhood concept

Classic task of linear programming is to maximize/minimize a linear
function over a polyhedron. There are efficient methods, like the simplex
method, to tackle this problem (Schrijver 1986). One of possible
interpretations of this method is that it is a kind of “greedy search” in
which one moves between polyhedron’s vertices along its edges.

Definition (geometric neighborhood)

We say that two standard imsets u, v ∈ S are geometric neighbors if the
line-segment connecting them in RP(N) is an edge of the polytope P
(generated by the set S of standard imsets).

The geometric neighborhood for the case of 3 variables was characterized
in (Studený Vomlel 2008). We found out it differs from the inclusion
neighborhood, which was introduced in connection with common ML
methods for maximizing quality criteria (Chickering 2002).

M. Studený (Prague) On Bayesian criteria for learning BNs July 1, 2008 33 / 39



Geometric view: search space for three variables

Example

B
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B

CA

B

CA

B

CA

B

A C

B

CA

B

CA

B

A C

B

B

CA

A C
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GES failure: example

Example

We put N = {a, b, c}, ∀ i ∈ N Xi = {0, 1} and consider the database

D : x1 ≡ (0, 0, 0), x2 ≡ (0, 1, 1), x3 ≡ (1, 1, 0), x4 ≡ (1, 0, 1) .

Possible n-repetition is given by x i+4t ≡ x i for t = 1, . . . , n − 1 and i = 1, 2, 3, 4.

The hyperpotential α : XN → (0,+∞) will be α ≡ 1.
In fact, this is a kind of so-called BDeu-metric (Heckerman el.al. 1995).

LML[α] (empty)− LML[α] (one-edge) = ln
125

99
> 0,

LML[α] (immorality)− LML[α] (empty) = ln
99

80
> 0 .

This also happens for any n-repetition, n ≥ 1.
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GES failure: picture again

Example
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GES failure: reason

Thus, the well-known greedy equivalence search (GES) algorithm
(Chickering 2002), which starts in the empty graph and search for the
increase in the criterion Q within inclusion neighbors, gets stuck in the
empty (essential) graph.

Nevertheless, the global maximum of Q = LML[α] is achieved in any of
the immoralities and any of these graphical models gives better
explanation of the occurrence of D.

The reason for this phenomenon is that the database “generated” from a
distribution which is not perfectly Markovian with respect to any
G ∈ DAGS (N).

This cannot happen if the maximization technique is based on the
geometric neighborhood. Then one is guaranteed to find the global
maximum of the criterion Q over BN structures.
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Some open questions

The formula for the LML data vector opens further research topics:

What is the asymptotic behavior of the data vector?

The question of statistical consistency of Bayesian quality criteria
should be re-examined.

As concerns the geometric neighborhood, the conjecture that it always
contains the inclusion neighborhood has recently been confirmed.

Is it possible to find the “polyhedral” description of the standard
imset polytope P for arbitrary |N|?
How “dense” the geometric neighborhood is, that is, what is the
“average” number of geometric neighbors of a given BN structure?
What are differential imsets for geometric neighbors?

These questions concern the complexity of a potential greedy search procedure for

maximization of a quality criterion Q based on the geometric neighborhood.
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