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Modelling complex systems

PS PL
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Figure: A Bayesian graphical model modelling a software action. S are
short numbers, L long numbers. Note that (PS⊥⊥PL)|S , L.
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Modelling complex systems

decision that (PS⊥⊥PL)|S ,L is often a modelling simplification
and may not be merited in practice

want to introduce a richer dependency structure into the
model

consider that full joint specification of PS and PL is beyond
our full capability or desirability

seek to utilise the strength of the Bayes linear methodology to
introduce a direct dependency between these variables in the
form of a partial specification whilst maintaining the
probabilistic structure of the model

result is a generalised Bayesian graphical model featuring
different levels of specification in different areas of the model
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Modelling complex systems
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Figure: A Bayesian graphical model modelling a software action. S are
short numbers, L long numbers. Note that we no longer have
(PS⊥⊥PL)|S , L.
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Modelling complex systems
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Figure: Extended Bayesian graphical model modelling a software action.
S are short numbers, L are long numbers, Z are numbers commencing
with a zero and X are numbers not commencing with a zero.
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Bayes linear analysis

Suppose that X , Y are two collections of random quantities of
interest

view X as a r × 1 vector and specify the prior mean vector
and prior variance matrix and collect these together as

bXe = {E (X ),Var(X )}

considering Y as a s × 1 vector, specifying E (Y), Var(Y)
yields the specification bYe

specification of the covariance matrix Cov(X ,Y) allows the
construction of bBe, where B = X ∪ Y.
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Bayes linear analysis

Adjusted mean and variance

The Bayes linear adjusted mean and variance for Y given X are
given by

EX (Y) = E (Y) + WX (Y){X − E (X )};

VarX (Y) = Var(Y) − Cov(Y,X )W T
X (Y),

where WX (Y) = Cov(Y,X )Var−1(X ).
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Bayes linear Bayes (BLB) graphical model
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Define the Bayes linear Bayes (BLB) graphical model, a mixture of
Bayesian and Bayes linear graphical models, as follows:
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Bayes linear Bayes (BLB) graphical model
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[B1] The graph GB = (B,EB), where B = {B1, . . ., Bn}, is a
Bayes linear graphical model. Each node Bi is a random vector.
We make a full second order prior specification over all elements of
B, denoted bBe0.
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Bayes linear Bayes (BLB) graphical model
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[B2] Certain nodes Bg are also elements of disjoint Bayesian
graphical models GVg

= (Vg ,EVg
), where Vg = Bg ∪ Dg , subject

to the conditions that for any Dgi ∈ Dg , pa(Dgi ) ⊂ Vg and
ch(Dgi ) ⊂ Dg . We make a full joint probabilistic specification over
the elements of each GVg

denoted f0(vg ).
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Bayes linear Bayes (BLB) graphical model

D 12

D

D

D

D D D D

DD

D

D13

41

43

42 51 52 53

54 55

31

32

D 11

B

B B B

B

1 2 3

4 5

full Bayes specification full Bayes specification

Bayes linear specification

full Bayes
specification

full Bayes
specification

[B3] The belief specification is completed by the condition, for
each g , that, given Bg , the collection Dg is conditionally
independent of all the remaining elements of B and of all elements
of each Dh, h 6= g .

Simon Shaw Generalised Bayesian graphical modelling utilising BLK



Bayes linear kinematics

Bayes linear kinematics is the Bayes linear analogue of Richard
Jeffrey’s probability kinematics

Let B = X ∪ Y be a collection of random quantities with a
second-order specification, bBeo = {Eo(B), Varo(B)},
attached.

rather than observing X , we instead only receive partial
information which changes our beliefs about X in some
generalised way, without affecting our adjusted beliefs for Y
given X

i.e. were we now to learn the value of X , then the preceding
information would be deemed irrelevant to the subsequent
belief adjustment

new specification, bXen = {En(X ), Varn(X )}, for X is given
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Bayes linear kinematics

Bayes linear kinematics

We say the new specification bBen = {En(B), Varn(B)} comes
from the old specification bBeo by Bayes linear kinematics (BLK)
on bXen if the following two Bayes linear sufficiency conditions are
satisfied

EoX (Y) = EnX (Y);

VaroX (Y) = VarnX (Y).

EoX (Y), EnX (Y) denote the old and new assignments for the
adjusted expectation, evaluated using the old and new
specifications bBeo , bBen respectively.

VaroX (Y), VarnX (Y) are the old and new adjusted variance
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Bayes linear kinematics

Theorem

The Bayes linear sufficiency conditions EoX (Y) = EnX (Y);
VaroX (Y) = VarnX (Y) are equivalent to the requirement that

En(Y) = Eo(Y) + Wo,X (Y){En(X ) − Eo(X )};

Varn(Y) = VaroX (Y) + Wo,X (Y)Varn(X )W T
o,X (Y);

Covn(Y,X ) = Wo,X (Y)Varn(X ),

where Wo,X (Y) = Covo(Y,X )Var−1
o (X ).

1 if X is observed, so that En(X ) = X and Varn(X ) = 0, then
En(Y) = EoX (Y) and Varn(Y) = VaroX (Y)

Bayes linear kinematics provides a generalisation of Bayes
linear adjustment to cover the case where the change in belief
over X may not result in X being known with certainty.
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Bayes linear kinematics

2 if D is a further vector of random quantities for which the
partial correlations between Y and D given X are zero, so that

Covo(Y − EoX (Y),D − EoX (D)) = 0.

we say that Y is separated from D by X in bCeo , written
(Y⊥⊥oD)|X , where C = B ∪ D. In this case, if we obtain
bXen by Bayes linear adjustment of X by D, then the Bayes
linear sufficiency conditions hold automatically

3 Not all bBen can be obtained from bBeo by linear fitting on
some D: linear fitting shrinks the variances but there is no
constraint that Varn(X ) ≤ Varo(X )
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Bayes linear kinematics: consistency check

suppose that A is a further vector of random quantities

let B∗ = A ∪ X ∪ Y, with bB∗eo , bB∗en respectively denoting
the old and new second-order specification for B∗.

Theorem

If bB∗en is obtained from bB∗eo by BLK on bXen then bB∗en is

equivalently obtained from bB∗eo by BLK on bBen, where B =
X ∪ Y.

the kinematic for B∗ may be constructed sequentially by first
using bXen to construct bBen and then using bBen to obtain
bB∗en
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Bayes linear kinematics: successive revisions

Theorem

If bB∗e1 is obtained from bB∗e0 by BLK on bXe1 and bB∗e12 is

obtained from bB∗e1 by BLK on bYe12 then bB∗e12 is equivalently

obtained from bB∗e0 by BLK on bBe12.

bB∗e12

bBe12

bB∗e0 -

@
@

@
@

@
@

@
@

@
@R

bB∗e1

?

bXe1

bYe12
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Bayes linear kinematics: commutativity

bBe2 -bBe21

bBe12?

bBe0 -bBe1

?

bXe21

bXe1

bYe2 bYe12

Key question: when does bBe12 = bBe21?

We now consider successive belief revisions using Bayes linear
kinematics and explore the constraints imposed upon our
specifications if the order of the revisions may be reversed
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Bayes linear kinematics: commutativity

Theorem

There is a unique solution to bB∗e12 = bB∗e21 for all B∗ ∈ 〈B∗〉 if

and only if Var−1
1 (X )+ Var−1

2 (X )− Var−1
0 (X ) is positive definite

if and only if Var−1
1 (Y) + Var−1

2 (Y)− Var−1
0 (Y) is positive

definite. The unique solution may be expressed as

Var12(W) = {Var−1
1 (W) + Var−1

2 (W) − Var−1
0 (W)}−1;

E12(W) = {Var−1
1 (W) + Var−1

2 (W) − Var−1
0 (W)}−1

{Var−1
1 (W)E1(W) + Var−1

2 (W)E2(W) −

Var−1
0 (W)E0(W)};

where W is equal to either X , Y, B or B∗.

under commutativity, bWe0, bWe1, bWe2 are sufficient for
calculating bWe12.
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Bayes linear Bayes (BLB) graphical model

D 12

D

D

D

D D D D

DD

D

D13

41

43

42 51 52 53

54 55

31

32

D 11

B

B B B

B

1 2 3

4 5

full Bayes specification full Bayes specification

Bayes linear specification

full Bayes
specification

full Bayes
specification

Observe some data in Dg and update beliefs about Bg using
full conditioning

Hence, obtain a new mean and variance for Bg
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Bayes linear Bayes (BLB) graphical model
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propagate this new specification over B using Bayes linear
kinematics

use successive Bayes linear kinematics to update over B from
observations in multiple Dg s

Simon Shaw Generalised Bayesian graphical modelling utilising BLK



Bayes linear Bayes (BLB) graphical model

suppose that we observe D∗
g ⊆ Dg

construct bBgeg = {Eg (Bg ), Varg (Bg )} where

Eg (Bg ) = E0(Bg |D
∗
g );

Varg (Bg ) = Var0(Bg |D
∗
g )

impose the Bayes linear sufficiency conditions E0Bg (B) =
EgBg (B) and Var0Bg (B) = VargBg (B)

hence,

Eg (B) = E0(B) + W0,Bg (B){E0(Bg |D
∗
g ) − E0(Bg )};

Varg (B) = Var0Bg (B) + W0,Bg (B)Var0(Bg |D
∗
g )W T

0,Bg (B),

with W0,Bg (B) = Cov0(B,Bg )Var−1
0 (Bg )

Bayes linear kinematics therefore provides a methodology for
embedding a full probability update into a Bayes linear model
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Bayes linear Bayes (BLB) graphical model

use a series of sequential commutative Bayes linear kinematic
updates to revise our beliefs over B = {B1, B2, . . ., Bn}
following observation in multiple sources

bBe2 -bBe12
?

bBe0 -bBe1

?

bB1e21

bB1e1

bB2e2 bB2e12

@
@

@
@

@
@

@
@

@
@R

bB1 ∪ B2e12
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Bayes linear Bayes (BLB) graphical model

use a series of sequential commutative Bayes linear kinematic
updates to revise our beliefs over B = {B1, B2, . . ., Bn}
following observation in multiple sources

bBe3 -bBe123
?

bBe0 -bBe12

?

bB1 ∪ B2e312

bB1 ∪ B2e12

bB3e3 bB3e123

@
@

@
@

@
@

@
@

@
@R

bB1 ∪ B2 ∪ B3e123
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Bayes linear Bayes (BLB) graphical model

consider revising our beliefs over B following observation of
the collection D∗ = ∪s

k=1D
∗
gk

where gk ∈ {1, . . ., n} and if

k 6= k
′

, gk 6= gk′ and each D∗
gk

⊆ Dgk

adding the data sequentially using commutative Bayes linear
kinematics updates yields bBeg [s]; bBeg [s] represents revised
beliefs over B incorporating the data, D∗

Var−1
g [s](B) =

s∑

k=1

Var−1
gk

(B) − (s − 1)Var−1
0 (B);

Var−1
g [s](B)Eg [s](B) =

s∑

k=1

Var−1
gk

(B)Egk
(B) −

(s − 1)Var−1
0 (B)E0(B).
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Local computation

Local computation theorems

1 Let B∗ = X ∪Y ∪A. If bB∗e1 is obtained from bB∗e0 by BLK
on bXe1 and (A⊥⊥0X ) | Y then bA ∪ Ye1 is obtained from
bA ∪ Ye0 by BLK on bYe1

2 Let C = F ∪ G ∪H. If bC ∪ Xe1 is obtained from bC ∪ Xe0 by
BLK on bXe1 and (F⊥⊥0X ∪H) | G then (F⊥⊥1H) | G

3 If (X⊥⊥0Y) | A and bB∗e12 is obtained by commutative BLK
on bXe1 and bYe2 then bAe12 is obtained by commutative
BLK on bAe1 and bAe2

Use these results to generate local computation algorithms.
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Conditional Bayes linear Bayes model

let X = {X1, . . . ,Xn} be a partition with a probability
distribution attached to it. Let A and B two collections of
random quantities

judge that given X we can learn nothing about A from B and
vice versa

if, given X , the graphical model over A is a Bayesian
graphical model and the graphical model over B is a Bayes
linear Bayes graphical model then the graphical model over
A∪B ∪X is a conditional Bayes linear Bayes graphical model
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Example of a conditional Bayes linear Bayes model
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Updating a conditional Bayes linear Bayes model

1 multiply each node in B by X and use Bayes linear kinematics
to update over these nodes and X

2 in particular, this will give a new distribution over X

3 propagate updates to A using probability kinematics on X
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Some conclusions

Bayes linear kinematics offer the natural generalisation to
probability kinematics for propagating generalised changes in
belief through partially specified belief systems, based around
expectation as primitive.

The application of Bayes linear kinematics to Bayes linear
Bayes graphical models shows the flexibility that we may
achieve with such an approach as it allows us to combine the
simplicity and tractability of belief specification and analysis
which we usually associate with Gaussian graphical models
with the ability to absorb data into the model by conditioning
on marginal distributions of any form.
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