The worst data for hierarchical log-linear models

František Matúš (Prague)

Poster at
LMS Durham Symposium
Mathematical Aspects of Graphical Models June 30 - July 10, 2008

The hierarchical model $\mathcal{E}_{N, A}$

Let N be a nonempty finite set,
\mathcal{A} a family of subsets of N such that $\bigcup \mathcal{A}=N$, and $X=\prod_{i \in N} X_{i}$ the Cartesian product of finite state spaces.

A probability measure (pm) Q on X is called \mathcal{A}-factorizable if for each $I \in \mathcal{A}$ there exists a real function ψ_{I} on $X_{I}=\prod_{i \in I} X_{i}$ s.t.

$$
Q(x)=\prod_{l \in \mathcal{A}} \psi_{l}\left(\pi_{l} x\right), \quad x \in X
$$

where π_{l} projects x to X_{l}.
The set of all \mathcal{A}-factorizable pm's that are positive, $Q(x)>0$ for $x \in X$, is denoted by $\mathcal{E}_{N, \mathcal{A}}$.

Information divergence from a model

The information divergence or relative entropy between pm's P, Q on X is given by

$$
D(P \| Q)= \begin{cases}\sum_{x: P(x)>0} P(x) \ln \frac{P(x)}{Q(x)}, & \text { if } P \ll Q \\ +\infty, & \text { otherwise }\end{cases}
$$

and the divergence of P from a model \mathcal{E} by

$$
D(P \| \mathcal{E})=\inf _{Q \in \mathcal{E}} D(P \| Q)
$$

If P is the empirical distribution of a dataset then a miminizer Q corresponds to an MLE estimate from the data in the model \mathcal{E}.

The number $D(P \| \mathcal{E})$ characterizes fit of the data to the model.

The worst data

The problem of maximization

$$
\max \{D(P \| \mathcal{E}): P \text { pm on } X\}
$$

goes back to Nihat Ay (2004) Ann. Probab.
A maximizer P admits interpretation as the empirical distribution of a bad dataset.

Example:
$\mathcal{E}=\operatorname{Bi}(n), n \geqslant 3$, has the unique global maximizer $\frac{1}{2}\left(\delta_{0}+\delta_{n}\right)$.
In general difficult, even for 4 binary variables with all 2-way interactions.

Upper bound on the divergence from $\mathcal{E}_{N, A}$

Theorem

For any pm P on X

$$
D\left(P \| \mathcal{E}_{N, \mathcal{A}}\right) \leqslant \min _{I \in \mathcal{A}} \sum_{i \in N \backslash I} H\left(\pi_{i} P\right)
$$

(Shannon entropies of marginals)
Proof: induction on $|N|$, decomposition tricks, ...
As a consequence, assuming all spaces X_{i} of the cardinality d,

$$
\max D\left(\cdot \| \mathcal{E}_{N, \mathcal{A}}\right) \leqslant \min _{l \in \mathcal{A}} \sum_{i \in N \backslash I} \ln \left|X_{i}\right| \leqslant\left[|N|-\max _{I \in \mathcal{A}}|I|\right] \ln d
$$

For 4 binary variables with all 2-way interactions the bound $2 \ln 2$ is, however, not tight.

Matroidal hierarchical models

Consider a simple connected matroid with the ground set N of the cardinality n, the rank function r, and the family of bases $\mathcal{A} \subseteq\binom{N}{k}$. Let all state spaces X_{i} have the same cardinality d.

Theorem

If a pm P on X satisfies

$$
H\left(\pi_{l} P\right)=r(I) \ln d, \quad I \subseteq N
$$

then it attains the upper bound, $D\left(P \| \mathcal{E}_{N, \mathcal{A}}\right)=[n-k] \ln d$.
The converse holds if the matroid is uniform.
This set of equalities is equivalent to saying that P is an ideal secret sharing scheme (sss) on the set of participants N with any choice of the dealer $i \in N$ and a secret of size d
(an object studied in cryptography for more than two decades).

Example: all k-way interactions, $\mathcal{A}=\binom{N}{k}$, among n variables, each taking d values. An ideal sss corresponds to an ($n-k$)-tuple of orthogonal Latin hypercubes of the size d.

CONCLUSION

Data remote to a statistical model can have a distinct cryptographic meaning.

