On minimization of entropy functionals under moment constraints

I. Csiszár (Budapest) F. Matúš (Prague)

Lecture at
LMS Durham Symposium
Mathematical Aspects of Graphical Models June 30 - July 10, 2008

Formulation of the problem Special instance and examples

Convex conjugation Main results
$(X, \mathcal{X}, \mu) \ldots$ a σ-finite measure space with μ nonzero
$(X, \mathcal{X}, \mu) \ldots$ a σ-finite measure space with μ nonzero $\varphi=\left(\varphi_{0}, \ldots, \varphi_{d}\right): X \rightarrow \mathbb{R}^{1+d} \ldots$ moment mapping
$(X, \mathcal{X}, \mu) \ldots$ a σ-finite measure space with μ nonzero $\varphi=\left(\varphi_{0}, \ldots, \varphi_{d}\right): X \rightarrow \mathbb{R}^{1+d} \ldots$ moment mapping
(a $(1+d)$-tuple of real-valued measurable functions on X)
$(X, \mathcal{X}, \mu) \ldots$ a σ-finite measure space with μ nonzero $\varphi=\left(\varphi_{0}, \ldots, \varphi_{d}\right): X \rightarrow \mathbb{R}^{1+d} \ldots$ moment mapping
(a $(1+d)$-tuple of real-valued measurable functions on X)
assuming $\varphi_{0} \equiv 1$
$(X, \mathcal{X}, \mu) \ldots$ a σ-finite measure space with μ nonzero $\varphi=\left(\varphi_{0}, \ldots, \varphi_{d}\right): X \rightarrow \mathbb{R}^{1+d} \ldots$ moment mapping
(a $(1+d)$-tuple of real-valued measurable functions on X)
assuming $\varphi_{0} \equiv 1$

The moment constraints

For $a=\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{R}^{1+d}$

$$
\mathcal{L}_{a}=\left\{g \geqslant 0 \text { measurable : } \int_{X} \varphi g d \mu=a\right\}
$$

$\gamma \ldots$ a strictly convex and differentiable function on $(0,+\infty)$
$\gamma \ldots$ a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim _{t \downarrow 0} \gamma(t)$ and $\gamma(t)=+\infty$ for $t<0$
$\gamma \ldots$ a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim _{t \downarrow 0} \gamma(t)$ and $\gamma(t)=+\infty$ for $t<0$

The entropy functional based on γ

For a measurable function $g \geqslant 0$ on X

$$
J(g)=\int_{X} \gamma(g) d \mu
$$

if the integral exists, finite of not, and $J(g)=+\infty$ otherwise.
$\gamma \ldots$ a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim _{t \downarrow 0} \gamma(t)$ and $\gamma(t)=+\infty$ for $t<0$

The entropy functional based on γ

For a measurable function $g \geqslant 0$ on X

$$
J(g)=\int_{X} \gamma(g) d \mu
$$

if the integral exists, finite of not, and $J(g)=+\infty$ otherwise.
Shannon functional: $\gamma(t)=t \ln t$
$\gamma \ldots$ a strictly convex and differentiable function on $(0,+\infty)$ extended to $\gamma(0)=\lim _{t \downarrow 0} \gamma(t)$ and $\gamma(t)=+\infty$ for $t<0$

The entropy functional based on γ

For a measurable function $g \geqslant 0$ on X

$$
J(g)=\int_{X} \gamma(g) d \mu
$$

if the integral exists, finite of not, and $J(g)=+\infty$ otherwise.
Shannon functional: $\gamma(t)=t \ln t$
Burg functional: $\gamma(t)=1-\ln t$

Formulation of the problem Special instance and examples

Convex conjugation Main results

PROBLEM

For given $a \in \mathbb{R}^{1+d}$, minimize $J(g)$ subject to the moment constraints $g \in \mathcal{L}_{a}$.

PROBLEM

For given $a \in \mathbb{R}^{1+d}$, minimize $J(g)$ subject to the moment constraints $g \in \mathcal{L}_{a}$.

The value function

$$
H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d}
$$

PROBLEM

For given $a \in \mathbb{R}^{1+d}$, minimize $J(g)$ subject to the moment constraints $g \in \mathcal{L}_{a}$.

The value function

$$
H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d},
$$

ranges in $[-\infty,+\infty]$ and is convex.

$X=\mathbb{R}, \mu$ Lebesgue measure and $\varphi=\left(1, x, x^{2}\right)$

$X=\mathbb{R}, \mu$ Lebesgue measure and $\varphi=\left(1, x, x^{2}\right)$

For $a=\left(a_{0}, a_{1}, a_{2}\right)$

$$
\begin{aligned}
\mathcal{L}_{a}=\{g \geqslant 0: & \int_{\mathbb{R}} g(x) d x=a_{0} \\
& \int_{\mathbb{R}} x g(x) d x=a_{1} \\
& \left.\int_{\mathbb{R}} x^{2} g(x) d x=a_{2}\right\}
\end{aligned}
$$

$X=\mathbb{R}, \mu$ Lebesgue measure and $\varphi=\left(1, x, x^{2}\right)$

For $a=\left(a_{0}, a_{1}, a_{2}\right)$

$$
\begin{aligned}
\mathcal{L}_{a}=\{g \geqslant 0: & \int_{\mathbb{R}} g(x) d x=a_{0} \\
& \int_{\mathbb{R}} x g(x) d x=a_{1} \\
& \left.\int_{\mathbb{R}} x^{2} g(x) d x=a_{2}\right\}
\end{aligned}
$$

$\gamma(t)=t \ln t, \quad t>0$
$X=\mathbb{R}, \mu$ Lebesgue measure and $\varphi=\left(1, x, x^{2}\right)$
For $a=\left(a_{0}, a_{1}, a_{2}\right)$

$$
\begin{aligned}
\mathcal{L}_{a}=\{g \geqslant 0: & \int_{\mathbb{R}} g(x) d x=a_{0} \\
& \int_{\mathbb{R}} x g(x) d x=a_{1} \\
& \left.\int_{\mathbb{R}} x^{2} g(x) d x=a_{2}\right\}
\end{aligned}
$$

$\gamma(t)=t \ln t, \quad t>0$
$J(g)=\int_{\mathbb{R}} g(x) \ln g(x) d x=-$ the differential Shannon entropy
$X=\mathbb{R}, \mu$ Lebesgue measure and $\varphi=\left(1, x, x^{2}\right)$
For $a=\left(a_{0}, a_{1}, a_{2}\right)$

$$
\begin{aligned}
\mathcal{L}_{a}=\{g \geqslant 0: & \int_{\mathbb{R}} g(x) d x=a_{0} \\
& \int_{\mathbb{R}} x g(x) d x=a_{1} \\
& \left.\int_{\mathbb{R}} x^{2} g(x) d x=a_{2}\right\}
\end{aligned}
$$

$\gamma(t)=t \ln t, \quad t>0$
$J(g)=\int_{\mathbb{R}} g(x) \ln g(x) d x=-$ the differential Shannon entropy
The function H admits an explicit formula, e.g. for $a=(1,0,1)$

$$
H(a)=\min _{\mathcal{L}_{a}} J=-\frac{1}{2} \ln (2 \pi)-\frac{1}{2}=J\left(\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right)
$$

$X=\mathbb{R}, \mu$ Lebesgue measure and $\varphi=\left(1, x, x^{2}\right)$
For $a=\left(a_{0}, a_{1}, a_{2}\right)$

$$
\begin{aligned}
\mathcal{L}_{a}=\{g \geqslant 0: & \int_{\mathbb{R}} g(x) d x=a_{0} \\
& \int_{\mathbb{R}} x g(x) d x=a_{1} \\
& \left.\int_{\mathbb{R}} x^{2} g(x) d x=a_{2}\right\}
\end{aligned}
$$

$\gamma(t)=t \ln t, \quad t>0$
$J(g)=\int_{\mathbb{R}} g(x) \ln g(x) d x=-$ the differential Shannon entropy
The function H admits an explicit formula, e.g. for $a=(1,0,1)$

$$
H(a)=\min _{\mathcal{L}_{a}} J=-\frac{1}{2} \ln (2 \pi)-\frac{1}{2}=J\left(\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right)
$$

the minimizer is unique,
Gaussian with the given moments

(X, \mathcal{X}, μ) probability space, φ arbitrary

(X, \mathcal{X}, μ) probability space, φ arbitrary

Shannon functional

(X, \mathcal{X}, μ) probability space, φ arbitrary

Shannon functional

For $a=\left(1, a_{1}, \ldots, a_{2}\right)$ if $g \in \mathcal{L}_{a}$
(X, \mathcal{X}, μ) probability space, φ arbitrary
Shannon functional
For $a=\left(1, a_{1}, \ldots, a_{2}\right)$ if $g \in \mathcal{L}_{a}$
any $g \in \mathcal{L}_{a}$ is the μ-density of a probability measure P
(X, \mathcal{X}, μ) probability space, φ arbitrary
Shannon functional
For $a=\left(1, a_{1}, \ldots, a_{2}\right)$ if $g \in \mathcal{L}_{a}$
any $g \in \mathcal{L}_{a}$ is the μ-density of a probability measure P and $\int_{X} g \ln g d \mu=D(P \| \mu)$.
(X, \mathcal{X}, μ) probability space, φ arbitrary
Shannon functional
For $a=\left(1, a_{1}, \ldots, a_{2}\right)$ if $g \in \mathcal{L}_{a}$
any $g \in \mathcal{L}_{a}$ is the μ-density of a probability measure P and $\int_{X} g \ln g d \mu=D(P \| \mu)$.
Thus, $\inf _{\mathcal{L}_{\mathrm{a}}} J$ is the minimization of the divergence $D(P \| \mu)$ subject to $\int_{X} \varphi d P=a$.
(X, \mathcal{X}, μ) probability space, φ arbitrary
Shannon functional
For $a=\left(1, a_{1}, \ldots, a_{2}\right)$ if $g \in \mathcal{L}_{a}$
any $g \in \mathcal{L}_{a}$ is the μ-density of a probability measure P
and $\int_{X} g \ln g d \mu=D(P \| \mu)$.
Thus, $\inf _{\mathcal{L}_{\mathrm{a}}} J$ is the minimization of the divergence $D(P \| \mu)$ subject to $\int_{X} \varphi d P=a$.
(Cs\&M (2003) IEEE Trans. IT)

Formulation of the problem Special instance and examples

Convex conjugation Main results

Shannon differential entropy Minimization of the relative entropy The value function identically $+\infty$

$$
X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n} \text { and } \varphi(x)=(1, x)
$$

Formulation of the problem Special instance and examples

Convex conjugation Main results

$$
\begin{aligned}
& X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n} \text { and } \varphi(x)=(1, x) \\
& \gamma(t)=e^{2 / t}, t>0
\end{aligned}
$$

$$
\begin{aligned}
& X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n} \text { and } \varphi(x)=(1, x) \\
& \gamma(t)=e^{2 / t}, t>0
\end{aligned}
$$

$$
J(g)=\int_{X} \gamma(g) d \mu=\sum_{n \geqslant 1} e^{2 / g(n)} \frac{1}{n^{2}}, \quad g \geqslant 0
$$

$X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n}$ and $\varphi(x)=(1, x)$
$\gamma(t)=e^{2 / t}, t>0$

$$
J(g)=\int_{X} \gamma(g) d \mu=\sum_{n \geqslant 1} e^{2 / g(n)} \frac{1}{n^{2}}, \quad g \geqslant 0 .
$$

If finite then $g(n) \geqslant \frac{1}{\ln n}$ eventually.

$$
\begin{aligned}
& X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n} \text { and } \varphi(x)=(1, x) \\
& \gamma(t)=e^{2 / t}, t>0
\end{aligned}
$$

$$
J(g)=\int_{X} \gamma(g) d \mu=\sum_{n \geqslant 1} e^{2 / g(n)} \frac{1}{n^{2}}, \quad g \geqslant 0
$$

If finite then $g(n) \geqslant \frac{1}{\ln n}$ eventually.
Therefore, $\int_{X} \varphi_{1} g d \mu=\sum_{n \geqslant 1} n g(n) \frac{1}{n^{2}}$ diverges.

$$
\begin{aligned}
& X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n} \text { and } \varphi(x)=(1, x) \\
& \gamma(t)=e^{2 / t}, t>0
\end{aligned}
$$

$$
J(g)=\int_{X} \gamma(g) d \mu=\sum_{n \geqslant 1} e^{2 / g(n)} \frac{1}{n^{2}}, \quad g \geqslant 0
$$

If finite then $g(n) \geqslant \frac{1}{\ln n}$ eventually.
Therefore, $\int_{X} \varphi_{1} g d \mu=\sum_{n \geqslant 1} n g(n) \frac{1}{n^{2}}$ diverges.
This implies that g is not in the union of the families \mathcal{L}_{a},

$$
\begin{aligned}
& X=\mathbb{R}, \mu=\sum_{n \geqslant 1} \frac{1}{n^{2}} \delta_{n} \text { and } \varphi(x)=(1, x) \\
& \gamma(t)=e^{2 / t}, t>0
\end{aligned}
$$

$$
J(g)=\int_{X} \gamma(g) d \mu=\sum_{n \geqslant 1} e^{2 / g(n)} \frac{1}{n^{2}}, \quad g \geqslant 0
$$

If finite then $g(n) \geqslant \frac{1}{\ln n}$ eventually.
Therefore, $\int_{X} \varphi_{1} g d \mu=\sum_{n \geqslant 1} n g(n) \frac{1}{n^{2}}$ diverges.
This implies that g is not in the union of the families \mathcal{L}_{a}, thus $H \equiv+\infty$.

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

$$
H(a)=\inf _{g \in \mathcal{L}_{\mathrm{a}}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots \text { the primal problem }
$$

$H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots$ the primal problem $H^{*}(\vartheta)=\sup _{a \in \mathbb{R}^{1+d}}[\langle\vartheta, a\rangle-H(a)], \quad \vartheta \in \mathbb{R}^{1+d} \ldots$ the conjugate of H
$H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots$ the primal problem $H^{*}(\vartheta)=\sup _{a \in \mathbb{R}^{1+d}}[\langle\vartheta, a\rangle-H(a)], \quad \vartheta \in \mathbb{R}^{1+d} \ldots$ the conjugate of H $\gamma^{*}(r)=\sup _{t>0}[r t-\gamma(t)], \quad r \in \mathbb{R} \ldots$ the conjugate of γ
$H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots$ the primal problem
$H^{*}(\vartheta)=\sup _{a \in \mathbb{R}^{1+d}}[\langle\vartheta, a\rangle-H(a)], \quad \vartheta \in \mathbb{R}^{1+d} \ldots$ the conjugate of H $\gamma^{*}(r)=\sup _{t>0}[r t-\gamma(t)], \quad r \in \mathbb{R} \ldots$ the conjugate of γ

Proposition $\left(H^{*}\right.$ is expressible through $\left.\gamma^{*}\right)$

If $H \not \equiv+\infty$ then

$$
H_{\gamma}^{*}(\vartheta)=\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu, \quad \vartheta \in \mathbb{R}^{1+d}
$$

$H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots$ the primal problem
$H^{*}(\vartheta)=\sup _{a \in \mathbb{R}^{1+d}}[\langle\vartheta, a\rangle-H(a)], \quad \vartheta \in \mathbb{R}^{1+d} \ldots$ the conjugate of H $\gamma^{*}(r)=\sup _{t>0}[r t-\gamma(t)], \quad r \in \mathbb{R} \ldots$ the conjugate of γ

Proposition $\left(H^{*}\right.$ is expressible through $\left.\gamma^{*}\right)$

If $H \not \equiv+\infty$ then

$$
H_{\gamma}^{*}(\vartheta)=\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu, \quad \vartheta \in \mathbb{R}^{1+d}
$$

(a full proof using ideas of Rockafellar 68)
$H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots$ the primal problem
$H^{*}(\vartheta)=\sup _{a \in \mathbb{R}^{1+d}}[\langle\vartheta, a\rangle-H(a)], \quad \vartheta \in \mathbb{R}^{1+d} \ldots$ the conjugate of H $\gamma^{*}(r)=\sup _{t>0}[r t-\gamma(t)], \quad r \in \mathbb{R} \ldots$ the conjugate of γ

Proposition $\left(H^{*}\right.$ is expressible through $\left.\gamma^{*}\right)$

If $H \not \equiv+\infty$ then

$$
H_{\gamma}^{*}(\vartheta)=\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu, \quad \vartheta \in \mathbb{R}^{1+d}
$$

(a full proof using ideas of Rockafellar 68)

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-H^{*}(\vartheta)\right], \quad a \in \mathbb{R}^{1+d} \ldots \text { the dual problem }
$$

$H(a)=\inf _{g \in \mathcal{L}_{a}} J(g), \quad a \in \mathbb{R}^{1+d} \ldots$ the primal problem
$H^{*}(\vartheta)=\sup _{a \in \mathbb{R}^{1+d}}[\langle\vartheta, a\rangle-H(a)], \quad \vartheta \in \mathbb{R}^{1+d} \ldots$ the conjugate of H $\gamma^{*}(r)=\sup _{t>0}[r t-\gamma(t)], \quad r \in \mathbb{R} \ldots$ the conjugate of γ

Proposition $\left(H^{*}\right.$ is expressible through $\left.\gamma^{*}\right)$

If $H \not \equiv+\infty$ then

$$
H_{\gamma}^{*}(\vartheta)=\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu, \quad \vartheta \in \mathbb{R}^{1+d}
$$

(a full proof using ideas of Rockafellar 68)
$H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-H^{*}(\vartheta)\right], \quad a \in \mathbb{R}^{1+d} \ldots$ the dual problem $H^{* *} \leqslant H$, with the equality at the points of lower semicontinuity

Shannon functional: $\gamma(t)=t \ln t$

Shannon functional: $\gamma(t)=t \ln t$
$\gamma^{*}(r)=\sup _{t>0}[r t-t \ln t]=e^{r-1}$

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{X} \exp (\langle\vartheta, \varphi\rangle-1) d \mu\right]
$$

Shannon functional: $\gamma(t)=t \ln t$
$\gamma^{*}(r)=\sup _{t>0}[r t-t \ln t]=e^{r-1}$

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{X} \exp (\langle\vartheta, \varphi\rangle-1) d \mu\right]
$$

where the bracket rewrites to

$$
\vartheta_{0} a_{0}+\sum_{j=1}^{d} \vartheta_{j} a_{j}-e^{\vartheta_{0}-1} \int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu
$$

Shannon functional: $\gamma(t)=t \ln t$
$\gamma^{*}(r)=\sup _{t>0}[r t-t \ln t]=e^{r-1}$

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{X} \exp (\langle\vartheta, \varphi\rangle-1) d \mu\right]
$$

where the bracket rewrites to

$$
\vartheta_{0} a_{0}+\sum_{j=1}^{d} \vartheta_{j} a_{j}-e^{\vartheta_{0}-1} \int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu
$$

Maximizing over ϑ_{0},
$H^{* *}(a)=a_{0} \ln a_{0}+\sup _{\vartheta_{1}, \ldots, \vartheta_{d}}\left[\sum_{j=1}^{d} \vartheta_{j} a_{j}-\int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu\right]$.

Shannon functional: $\gamma(t)=t \ln t$
$\gamma^{*}(r)=\sup _{t>0}[r t-t \ln t]=e^{r-1}$

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{X} \exp (\langle\vartheta, \varphi\rangle-1) d \mu\right]
$$

where the bracket rewrites to

$$
\vartheta_{0} a_{0}+\sum_{j=1}^{d} \vartheta_{j} a_{j}-e^{\vartheta_{0}-1} \int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu
$$

Maximizing over ϑ_{0},
$H^{* *}(a)=a_{0} \ln a_{0}+\sup _{\vartheta_{1}, \ldots, \vartheta_{d}}\left[\sum_{j=1}^{d} \vartheta_{j} a_{j}-\int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu\right]$.
... maximization of the normalized log-likelihood function in the exponential family based on μ and $\left(\varphi_{1}, \ldots, \varphi_{d}\right)$.

Shannon functional: $\gamma(t)=t \ln t$
$\gamma^{*}(r)=\sup _{t>0}[r t-t \ln t]=e^{r-1}$

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{X} \exp (\langle\vartheta, \varphi\rangle-1) d \mu\right]
$$

where the bracket rewrites to

$$
\vartheta_{0} a_{0}+\sum_{j=1}^{d} \vartheta_{j} a_{j}-e^{\vartheta_{0}-1} \int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu
$$

Maximizing over ϑ_{0},
$H^{* *}(a)=a_{0} \ln a_{0}+\sup _{\vartheta_{1}, \ldots, \vartheta_{d}}\left[\sum_{j=1}^{d} \vartheta_{j} a_{j}-\int_{X} \exp \left(\sum_{j=1}^{d} \vartheta_{j} \varphi_{j}\right) d \mu\right]$.
... maximization of the normalized log-likelihood function in the exponential family based on μ and $\left(\varphi_{1}, \ldots, \varphi_{d}\right)$. (Cs\&M (2008) Probab. Th. Rel. F.)

Formulation of the problem Special instance and examples

Convex conjugation Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.

Formulation of the problem Special instance and examples

Convex conjugation Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.

Formulation of the problem Special instance and examples

Convex conjugation Main results

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.)
Example: Burg entropy

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,

Fenchel duality
MLE in exponential family
Minimization under constraint qualification
Example: Shannon differential entropy (cont.) Example: Burg entropy

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$,

Fenchel duality

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle)$ does not depend on the choice of a maximizer ϑ,

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle)$ does not depend on the choice of a maximizer ϑ, and for all $g \in \mathcal{L}_{a}$

$$
J(g)=H(a)+B\left(g, g_{a}\right)+\int_{X} g\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu .
$$

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle)$ does not depend on the choice of a maximizer ϑ, and for all $g \in \mathcal{L}_{a}$

$$
J(g)=H(a)+B\left(g, g_{a}\right)+\int_{X} g\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
$$

(B... Bregman distance based on γ)

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle)$ does not depend on the choice of a maximizer ϑ, and for all $g \in \mathcal{L}_{a}$

$$
J(g)=H(a)+B\left(g, g_{a}\right)+\int_{X} g\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
$$

($B \ldots$ Bregman distance based on γ)
The primal problem has a minimizer if and only if $g_{a} \in \mathcal{L}_{a}$.

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$, the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle)$ does not depend on the choice of a maximizer ϑ, and for all $g \in \mathcal{L}_{a}$

$$
J(g)=H(a)+B\left(g, g_{a}\right)+\int_{X} g\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
$$

($B \ldots$ Bregman distance based on γ)
The primal problem has a minimizer if and only if $g_{a} \in \mathcal{L}_{a}$. \int_{X} vanishes when $\gamma^{\prime}(0)=-\infty(\gamma$ is ess. smooth, or steep $)$.

Theorem

Assume $a \in \operatorname{ri}\left(\operatorname{dom}\left(H_{\gamma}\right)\right)$ and $H_{\gamma}(a)>-\infty$.
Then, $H_{\gamma}(a)=H_{\gamma}^{* *}(a)$,
the dual value is attained by some $\vartheta \in \mathbb{R}^{1+d}$,
the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle)$ does not depend
on the choice of a maximizer ϑ,
and for all $g \in \mathcal{L}_{a}$

$$
J(g)=H(a)+B\left(g, g_{a}\right)+\int_{X} g\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
$$

(B... Bregman distance based on γ)
The primal problem has a minimizer if and only if $g_{a} \in \mathcal{L}_{a}$. \int_{X} vanishes when $\gamma^{\prime}(0)=-\infty(\gamma$ is ess. smooth, or steep $)$. If $g_{n} \in \mathcal{L}_{a}$ and $J\left(g_{n}\right) \rightarrow H(a)$ then $B\left(g_{n}, g_{a}\right) \rightarrow 0$.

$H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{\mathbb{R}} g(x) \ln g(x) d x, \ldots$ the primal problem

 where $\mathcal{L}_{a}, a \in \mathbb{R}^{3}$, comes from the moments $1, x, x^{2}$$H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{\mathbb{R}} g(x) \ln g(x) d x, \ldots$ the primal problem where $\mathcal{L}_{a}, a \in \mathbb{R}^{3}$, comes from the moments $1, x, x^{2}$
the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{3}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\vartheta_{2} a_{2}-\int_{X} \exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right) d \mu\right]
$$

explicitly computable, finite on an open set in \mathbb{R}^{3}
$H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{\mathbb{R}} g(x) \ln g(x) d x, \ldots$ the primal problem where $\mathcal{L}_{a}, a \in \mathbb{R}^{3}$, comes from the moments $1, x, x^{2}$
the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{3}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\vartheta_{2} a_{2}-\int_{X} \exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right) d \mu\right]
$$

explicitly computable, finite on an open set in \mathbb{R}^{3}
$H=H^{* *}$ with the same open effective domain
$H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{\mathbb{R}} g(x) \ln g(x) d x, \ldots$ the primal problem where $\mathcal{L}_{a}, a \in \mathbb{R}^{3}$, comes from the moments $1, x, x^{2}$
the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{3}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\vartheta_{2} a_{2}-\int_{X} \exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right) d \mu\right]
$$

explicitly computable, finite on an open set in \mathbb{R}^{3}
$H=H^{* *}$ with the same open effective domain
For a in the open domain
$H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{\mathbb{R}} g(x) \ln g(x) d x, \ldots$ the primal problem where $\mathcal{L}_{a}, a \in \mathbb{R}^{3}$, comes from the moments $1, x, x^{2}$
the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{3}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\vartheta_{2} a_{2}-\int_{X} \exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right) d \mu\right]
$$

explicitly computable, finite on an open set in \mathbb{R}^{3}
$H=H^{* *}$ with the same open effective domain
For a in the open domain
g_{a} has the form $\exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right)$, thus is proportional to a Gaussian density
$H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{\mathbb{R}} g(x) \ln g(x) d x, \ldots$ the primal problem where $\mathcal{L}_{a}, a \in \mathbb{R}^{3}$, comes from the moments $1, x, x^{2}$
the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{3}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\vartheta_{2} a_{2}-\int_{X} \exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right) d \mu\right]
$$

explicitly computable, finite on an open set in \mathbb{R}^{3}
$H=H^{* *}$ with the same open effective domain
For a in the open domain
g_{a} has the form $\exp \left(\vartheta_{0}+\vartheta_{1} x+\vartheta_{2} x^{2}-1\right)$, thus is proportional to a Gaussian density
adjusting the moments, g_{a} is the unique primal solution

Fenchel duality
MLE in exponential family
Minimization under constraint qualification Example: Shannon differential entropy (cont.)
Example: Burg entropy

$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$

Fenchel duality
MLE in exponential family
Minimization under constraint qualification Example: Shannon differential entropy (cont.)
Example: Burg entropy

$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$

Burg functional: $\gamma(t)=1-\ln t, \quad t>0$

$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$

Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$
Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$

$$
X=[0,1], d \mu=2 x d x \text { and } \varphi=(1, x)
$$

Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$

$$
X=[0,1], d \mu=2 x d x \text { and } \varphi=(1, x)
$$

Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$ the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{2}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\int_{0}^{1} \ln \left(-\vartheta_{0}-\vartheta_{1} x\right) 2 x d x\right]
$$

$$
X=[0,1], d \mu=2 x d x \text { and } \varphi=(1, x)
$$

Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$ the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{2}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\int_{0}^{1} \ln \left(-\vartheta_{0}-\vartheta_{1} x\right) 2 x d x\right]
$$

$H=H^{* *}$, the domain open $a_{0}>0, a_{1}<a_{0}$
$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$
Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$ the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{2}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\int_{0}^{1} \ln \left(-\vartheta_{0}-\vartheta_{1} x\right) 2 x d x\right]
$$

$H=H^{* *}$, the domain open $a_{0}>0, a_{1}<a_{0}$ unique maximizer $\vartheta=\left(0,-1 / a_{1}\right)$ when $a_{0} \geqslant 2 a_{1}$,
$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$
Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$ the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{2}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\int_{0}^{1} \ln \left(-\vartheta_{0}-\vartheta_{1} x\right) 2 x d x\right]
$$

$H=H^{* *}$, the domain open $a_{0}>0, a_{1}<a_{0}$
unique maximizer $\vartheta=\left(0,-1 / a_{1}\right)$ when $a_{0} \geqslant 2 a_{1}$,
generalized primal solution $\quad g_{a}(x)=a_{1} / x$
$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$
Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$ the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{2}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\int_{0}^{1} \ln \left(-\vartheta_{0}-\vartheta_{1} x\right) 2 x d x\right]
$$

$H=H^{* *}$, the domain open $a_{0}>0, a_{1}<a_{0}$
unique maximizer $\vartheta=\left(0,-1 / a_{1}\right)$ when $a_{0} \geqslant 2 a_{1}$,
generalized primal solution $\quad g_{a}(x)=a_{1} / x$
if $a_{0}=1, a_{1}<1 / 2$ it is not a density: $\int_{0}^{1} \frac{a_{1}}{x} 2 x d x=2 a_{1}<a_{0}$
$X=[0,1], d \mu=2 x d x$ and $\varphi=(1, x)$
Burg functional: $\gamma(t)=1-\ln t, \quad t>0$
$\gamma^{*}(r)=-\ln (-r), \quad r<0$
$\gamma^{* \prime}(r)=-1 / r, \quad r<0$
the primal problem $H(a)=\inf _{g \in \mathcal{L}_{a}} \int_{0}^{1}[1-\ln g(x)] 2 x d x$ the dual problem

$$
H^{* *}(a)=\sup _{\vartheta \in \mathbb{R}^{2}}\left[\vartheta_{0} a_{0}+\vartheta_{1} a_{1}+\int_{0}^{1} \ln \left(-\vartheta_{0}-\vartheta_{1} x\right) 2 x d x\right]
$$

$H=H^{* *}$, the domain open $a_{0}>0, a_{1}<a_{0}$
unique maximizer $\vartheta=\left(0,-1 / a_{1}\right)$ when $a_{0} \geqslant 2 a_{1}$,
generalized primal solution $\quad g_{a}(x)=a_{1} / x$
if $a_{0}=1, a_{1}<1 / 2$ it is not a density: $\int_{0}^{1} \frac{a_{1}}{x} 2 x d x=2 a_{1}<a_{0}$
NO primal solution! (a variation on Borwein \& Lewis (1993))
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.

$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.

 $c n_{\varphi}(\mu)=\left\{\right.$ ta: $\left.t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of $\mu$$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{\right.$ ta: $\left.t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.

Theorem

$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then $\operatorname{dom}(H)$ equals ri $\left(c n_{\varphi}(\mu)\right)$ or \emptyset.
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then $\operatorname{dom}(H)$ equals ri $\left(c n_{\varphi}(\mu)\right)$ or \emptyset. If μ is finite and $\gamma(0)$ finite then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$.
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then $\operatorname{dom}(H)$ equals ri $\left(c n_{\varphi}(\mu)\right)$ or \emptyset. If μ is finite and $\gamma(0)$ finite then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$. If μ is infinite and $\gamma(0)=0$ then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$.
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then $\operatorname{dom}(H)$ equals ri $\left(c n_{\varphi}(\mu)\right)$ or \emptyset. If μ is finite and $\gamma(0)$ finite then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$. If μ is infinite and $\gamma(0)=0$ then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0)>0$ then $\operatorname{dom}(H)=\emptyset$.
$c c_{\varphi}(\mu) \subseteq \mathbb{R}^{1+d} \ldots$ convex core of the φ-image of μ, intersection of all convex Borel sets $B \subseteq \mathbb{R}^{1+d}$ s.t. $\mu\left(\varphi^{-1}\left(\mathbb{R}^{1+d} \backslash B\right)\right)=0$.
$c n_{\varphi}(\mu)=\left\{t a: t \geqslant 0, a \in c c_{\varphi}(\mu)\right\} \ldots \varphi$-cone of μ
Lemma: The set \mathcal{L}_{a} is nonempty if and only if $a \in c n_{\varphi}(\mu)$.
Corollary: $H=+\infty$ outside $c n_{\varphi}(\mu)$.

Theorem

If μ is finite and $\gamma(0)=+\infty$ then $\operatorname{dom}(H)$ equals ri $\left(c n_{\varphi}(\mu)\right)$ or \emptyset. If μ is finite and $\gamma(0)$ finite then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$. If μ is infinite and $\gamma(0)=0$ then $\operatorname{dom}(H)=c n_{\varphi}(\mu)$.

If μ is infinite and $\gamma(0)>0$ then $\operatorname{dom}(H)=\emptyset$.
If μ is infinite and $\gamma(0)<0$ then $H=-\infty$ on $\operatorname{dom}(H)=c n_{\varphi}(\mu)$.

Formulation of the problem Special instance and examples

Convex conjugation Main results

Constraint qualification avoided
The dual problem

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Formulation of the problem Special instance and examples

Convex conjugation Main results

Constraint qualification avoided
The dual problem

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.
Denote by F the face of the convex cone $\operatorname{cn}_{\varphi}(\mu)$ with $a \in \operatorname{ri}(F)$

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.
Denote by F the face of the convex cone $c n_{\varphi}(\mu)$ with $a \in r i(F)$ Then, the adjusted dual problem

$$
\tilde{H}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{\varphi^{-1}(c l(F))} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] .
$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$,

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.
Denote by F the face of the convex cone $c n_{\varphi}(\mu)$ with $a \in \operatorname{ri}(F)$ Then, the adjusted dual problem

$$
\tilde{H}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{\varphi^{-1}(c l(F))} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] .
$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$,
$H_{\gamma}(a)=\tilde{H}(a)+\gamma(0) \cdot \mu\left(X \backslash \varphi^{-1}(c l(F))\right)$,

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.
Denote by F the face of the convex cone $c n_{\varphi}(\mu)$ with $a \in \operatorname{ri}(F)$ Then, the adjusted dual problem

$$
\tilde{H}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{\varphi^{-1}(c l(F))} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] .
$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$,
$H_{\gamma}(a)=\tilde{H}(a)+\gamma(0) \cdot \mu\left(X \backslash \varphi^{-1}(c l(F))\right)$,
the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle) 1_{\varphi^{-1}(F)}$ does not depend on its choice

Theorem

Assume $a \in \mathbb{R}^{1+d}$ with $H_{\gamma}(a)$ finite.
Denote by F the face of the convex cone $c n_{\varphi}(\mu)$ with $a \in r i(F)$ Then, the adjusted dual problem

$$
\tilde{H}(a)=\sup _{\vartheta \in \mathbb{R}^{1+d}}\left[\langle\vartheta, a\rangle-\int_{\varphi^{-1}(c l(F))} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] .
$$

has a maximizer $\vartheta \in \mathbb{R}^{1+d}$,
$H_{\gamma}(a)=\tilde{H}(a)+\gamma(0) \cdot \mu\left(X \backslash \varphi^{-1}(c l(F))\right)$,
the function $g_{a}=\gamma^{* \prime}(\langle\vartheta, \varphi\rangle) 1_{\varphi^{-1}(F)}$ does not depend on its choice and for all $g \in \mathcal{L}_{a}$

$$
J(g)=H(a)+B\left(g, g_{a}\right)+\int_{X} g\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
$$

Formulation of the problem Special instance and examples

Constraint qualification avoided
The dual problem

Theorem

Assume $H>-\infty$ and $a \in \operatorname{dom}\left(H^{* *}\right)$.

Formulation of the problem Special instance and examples

Constraint qualification avoided
The dual problem

Theorem

Assume $H>-\infty$ and $a \in \operatorname{dom}\left(H^{* *}\right)$.

Theorem

Assume $H>-\infty$ and $a \in \operatorname{dom}\left(H^{* *}\right)$.
Then, there exists a unique nonnegative function h_{a} such that

$$
\begin{aligned}
H^{* *}(a)- & {\left[\langle\vartheta, a\rangle-\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] \geqslant } \\
& B\left(h_{a}, \gamma^{* \prime}(\langle\vartheta, \varphi\rangle)\right)+\int_{X} h_{a}\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
\end{aligned}
$$

$$
\text { for } \vartheta \in \operatorname{dom}\left(H_{\gamma}^{*}\right) \text { satisfying }\langle\vartheta, \varphi\rangle<\gamma^{\prime}(+\infty) \text {, } \mu \text {-a.e. }
$$

Theorem

Assume $H>-\infty$ and $a \in \operatorname{dom}\left(H^{* *}\right)$.
Then, there exists a unique nonnegative function h_{a} such that

$$
\begin{aligned}
H^{* *}(a)- & {\left[\langle\vartheta, a\rangle-\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] \geqslant } \\
& B\left(h_{a}, \gamma^{* \prime}(\langle\vartheta, \varphi\rangle)\right)+\int_{X} h_{a}\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
\end{aligned}
$$

for $\vartheta \in \operatorname{dom}\left(H_{\gamma}^{*}\right)$ satisfying $\langle\vartheta, \varphi\rangle<\gamma^{\prime}(+\infty)$, μ-a.e.
If $H_{\gamma}(a)=H^{* *}(a)$ then $h_{a}=g_{a}$.

Theorem

Assume $H>-\infty$ and $a \in \operatorname{dom}\left(H^{* *}\right)$.
Then, there exists a unique nonnegative function h_{a} such that

$$
\begin{aligned}
H^{* *}(a)- & {\left[\langle\vartheta, a\rangle-\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] \geqslant } \\
& B\left(h_{a}, \gamma^{* \prime}(\langle\vartheta, \varphi\rangle)\right)+\int_{X} h_{a}\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
\end{aligned}
$$

for $\vartheta \in \operatorname{dom}\left(H_{\gamma}^{*}\right)$ satisfying $\langle\vartheta, \varphi\rangle<\gamma^{\prime}(+\infty)$, μ-a.e.
If $H_{\gamma}(a)=H^{* *}(a)$ then $h_{a}=g_{a}$.
For $\gamma(t)=t \ln t$, this is MLE in EF; an explicit construction of h_{a} is available in Cs\&M (2008) Probab. Th. Rel. F.

Theorem

Assume $H>-\infty$ and $a \in \operatorname{dom}\left(H^{* *}\right)$.
Then, there exists a unique nonnegative function h_{a} such that

$$
\begin{aligned}
H^{* *}(a)- & {\left[\langle\vartheta, a\rangle-\int_{X} \gamma^{*}(\langle\vartheta, \varphi\rangle) d \mu\right] \geqslant } \\
& B\left(h_{a}, \gamma^{* \prime}(\langle\vartheta, \varphi\rangle)\right)+\int_{X} h_{a}\left|\gamma^{\prime}(0)-\langle\vartheta, \varphi\rangle\right|_{+} d \mu
\end{aligned}
$$

$$
\text { for } \vartheta \in \operatorname{dom}\left(H_{\gamma}^{*}\right) \text { satisfying }\langle\vartheta, \varphi\rangle<\gamma^{\prime}(+\infty) \text {, } \mu \text {-a.e. }
$$

If $H_{\gamma}(a)=H^{* *}(a)$ then $h_{a}=g_{a}$.
For $\gamma(t)=t \ln t$, this is MLE in EF; an explicit construction of h_{a} is available in Cs\&M (2008) Probab. Th. Rel. F.

The talk is based on a contribution to Proc. IEEE ISIT, Toronto, being published this week.

