Flexible Wishart distributions and their applications

Hélène Massam

York University
with co-authors, G. Letac, B. Rajaratnam, C. Carvalho

Outline

- The Gaussian model
- The graphical Gaussian model \mathcal{N}_{G}
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

Inference for the saturated Gaussian model

$$
\mathcal{N}=\left\{N_{r}(0, \Sigma), \quad \Sigma \in P^{+}\right\}
$$

where P^{+}is the cone of positive definite matrices.
Let Z_{1}, \ldots, Z_{n} be a sample from $N_{r}(0, \Sigma)$.

- The MLE of $n \Sigma$ is $n \tilde{\Sigma}=U=\sum_{i=1}^{n} Z_{i} Z_{i}^{t}$ with

$$
U \sim W_{r}\left(\frac{n}{2}, \Sigma\right)
$$

- The conjugate prior on $\Omega=\Sigma^{-1}$ is the Wishart

$$
\Omega \sim W_{r}(\alpha, \theta)
$$

The Wishart distribution

Recall $\mathcal{F}_{\alpha}=\left\{W_{r}(\alpha, \Sigma), \Sigma \in P^{+}\right\}$is the NEF generated by

$$
\mu_{\alpha}(d x)=(\operatorname{det} x)^{\alpha-\frac{r+1}{2}} \mathbf{1}_{P^{+}}(d x), \text { with } \alpha>\frac{r-1}{2}
$$

and the density of the $W_{r}(\alpha, \Sigma)$ is

$$
W_{r}(\alpha, \Sigma)(d x)=\frac{(\operatorname{det} \Sigma)^{-\alpha}}{\Gamma_{r}(\alpha)} \exp -\frac{1}{2}\left\langle x, \Sigma^{-1}\right\rangle \mu_{\alpha}(d x)
$$

while the density of $Y=X^{-1}$ is the inverse Wishart

$$
I W_{r}(\alpha, \Sigma ; d y)=\frac{(\operatorname{det} \Sigma)^{-\alpha}}{\Gamma_{r}(\alpha)} \exp -\frac{1}{2}\left\langle y^{-1}, \Sigma^{-1}\right\rangle(\operatorname{det} y)^{-\alpha-\frac{r+1}{2}} \mathbf{1}_{P+}(d y)
$$

Outline

- The Gaussian model
- The graphical Gaussian model
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

Graphical models: decomposable graphs

Let $G=(V, E)$ be a graph: V is the set of vertices and E the set of edges.
G is said to be decomposable if it does not contain a cycle of length greater than or equal to 4 without a chord.

Example $\stackrel{1}{\bullet}-\stackrel{2}{\bullet}-\stackrel{3}{\bullet}-\stackrel{4}{\bullet}$
$C_{1}=\{1,2\}, C_{2}=\{2,3\}, C_{3}=\{3,4\}$ are the cliques
$S_{2}=\{2\}, S_{3}=\{3\}$ are the separators.

Perfect ordering of the cliques

A graph is decomposable if and only if there is a perfect ordering of its cliques.

$$
\stackrel{1}{\bullet}-\stackrel{2}{\bullet}-\stackrel{4}{\bullet}
$$

but C_{1}, C_{3}, C_{2} is not perfect.
We use the notation

$$
\begin{gathered}
H_{i}=\cup_{j=1}^{i} C_{j}, \quad S_{i}=C_{i} \cap\left(\cup_{j=1}^{i-1} C_{j}\right) \quad R_{i}=C_{i} \backslash S_{i}=C_{i} \backslash H_{i-1} . \\
\text { history } \quad \text { separator } \quad \text { residual }
\end{gathered}
$$

Here for the perfect order C_{1}, C_{2}, C_{3},

$$
H_{1}=C_{1}, H_{2}=C_{1} \cup C_{2}, S_{2}=C_{2} \cap C_{1}=\{2\}, H_{3}=C_{3} \cap\left(C_{1} \cup C_{2}\right), S_{3}
$$

The Markov property w.r.t. G decomposable

We write $i \sim j$ to indicate i and j are linked.
A distribution is said to be Markov with respect to the graph if

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}} \text { whenever } i \nsim j .
$$

For a perfect order of the cliques, C_{1}, \ldots, C_{k}, we have the following conditional independence relations

$$
X_{R_{2}} \perp X_{C_{1}}\left|X_{S_{2}}, \ldots, \ldots X_{R_{k}} \perp X_{H_{k-1}}\right| X_{S_{k}},
$$

General notation, for Σ symmetric

$$
\begin{array}{r}
\Sigma_{S_{i}}=\Sigma_{\langle i\rangle}, \quad \Sigma_{R_{i}}=\Sigma_{[i]}, \quad \Sigma_{R_{i}, S_{i}}=\Sigma_{[i\rangle}, \\
\Sigma_{R_{i} \bullet S_{i}}=\Sigma_{[i]}-\Sigma_{[i\rangle} \Sigma_{\langle i\rangle}^{-1} \Sigma_{\langle i]}=\Sigma_{[j]}
\end{array}
$$

The Gaussian model Markov w.r.t. G

Let C_{1}, \ldots, C_{k} be a perfect order of the cliques.
The normal density factorizes as (see DL93, Th. 2.6)

$$
N_{X}(0, \Sigma)=\frac{\prod_{i=1}^{k} N\left(0, \Sigma_{C_{i}}\right)}{\prod_{i=2}^{k} N\left(0, \Sigma_{S_{i}}\right)}=\frac{\prod_{C \in \mathcal{C}} N\left(0, \Sigma_{C}\right)}{\prod_{S \in \mathcal{S}} N\left(0, \Sigma_{S}\right)}
$$

The parameter is the collection $\left(\Sigma_{C}, C \in \mathcal{C}\right)$
We have a reduction of the parameter space.

An example

The conditional covariance between X_{3} and X_{1} given X_{2} is zero, that is

$$
\sigma_{31 \bullet 2}=\sigma_{31}-\sigma_{32} \sigma_{2}^{-1} \sigma_{21}=0
$$

and therefore $\hat{\Sigma}=\left(\begin{array}{ccc}\sigma_{1} & \sigma_{12} & \sigma_{12} \sigma_{2}^{-1} \sigma_{23} \\ \sigma_{21} & \sigma_{2} & \sigma_{23} \\ \sigma_{32} \sigma_{2}^{-1} \sigma_{21} & \sigma_{32} & \sigma_{3}\end{array}\right)$
The parameter is

$$
\Sigma=\left(\begin{array}{ccc}
\sigma_{1} & \sigma_{12} & * \\
\sigma_{21} & \sigma_{2} & \sigma_{23} \\
* & \sigma_{32} & \sigma_{3}
\end{array}\right)=\left(\Sigma_{(12)}, \Sigma_{(23)}\right)=\left(\Sigma_{(12)}, \sigma_{32} \sigma_{2}^{-1}, \sigma_{3 \cdot 2}\right) .
$$

while $\Omega=\hat{\Sigma}^{-1}=\left(\begin{array}{ccc}\omega_{1} & \omega_{12} & 0 \\ \omega_{21} & \omega_{2} & \omega_{23} \\ 0 & \omega_{32} & \omega_{3}\end{array}\right)$ because $X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}} \Longleftrightarrow \omega_{i j}=0$.

The cones P_{G} and Q_{G}

- The cone Q_{G}
$Q_{G}:=\left\{\right.$ incomplete matrices x with missing entries $x_{i j}$,
$(i, j) \notin E$ and such that $x_{A}>0$ for $A \subseteq V$ complete $\}$.
- The cone P_{G}

$$
P_{G}:=\left\{y \in P^{+} \text {such that } y_{i j}=0 \text { whenever }(i, j) \notin E\right\} .
$$

When G is decomposable, any x in Q_{G} can be uniquely completed as $\hat{x} \in P^{+}$such that for all $(i, j) \in E$

$$
x_{i j}=\hat{x}_{i j} \text { and } \hat{x}^{-1} \in P_{G}
$$

The bijection between P_{G} and Q_{G}

Let π denotes the projection of P onto incomplete matrices.

The mapping

$$
\varphi: y=(\widehat{x})^{-1} \in P_{G} \mapsto x=\varphi(y)=\pi\left(y^{-1}\right) \in Q_{G},
$$

defines a bijection between P_{G} and Q_{G}.

Notation:

$$
\text { for }(x, y) \in Q_{G} \times P_{G}, \operatorname{tr}(x y)=\langle x, y\rangle=\sum_{(i, j) \in E} x_{i j} y_{i j}=\operatorname{tr}(\hat{x} y) .
$$

Inference for Σ in \mathcal{N}_{G}

$$
\mathcal{N}_{G}=\left\{N(0, \Sigma) \mid \Omega=\widehat{\Sigma}^{-1} \in P_{G}\right\}=\left\{N(0, \Sigma), \quad \Sigma \in Q_{G}\right\}
$$

- $\quad \Sigma$ lies in Q_{G}.
- Ω lies in P_{G}.
- The Wishart is defined on P^{+}: not the right cone!.

Question 1: What is the distribution of the MLE of $\Sigma \in Q_{G}$?
Question 2: Which prior should we put on Σ or what would the induced prior on $\Omega=\hat{\Sigma}^{-1} \in P_{G}$ be?

The answer is given in DL93!!!

Outline

- The Gaussian model
- The graphical Gaussian model \mathcal{N}_{G}
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

The hyper Wishart for the MLE of Σ

The model \mathcal{N}_{G} is strong meta Markov:

$$
\begin{aligned}
N_{X}(0, \Sigma)= & N_{C_{1}}\left(0, \Sigma_{C_{1}} ; X_{C_{1}}\right) \\
& \prod_{i=2}^{k} N_{R_{i} \mid S_{i}}\left(\Sigma_{R_{i}, S_{i}} \Sigma_{S_{i}}^{-1} x_{S_{i}}, \Sigma_{R_{i} \bullet S_{i}} ; X_{R_{i}} \mid x_{S_{i}}\right)
\end{aligned}
$$

$\Sigma_{C_{1}},\left(\Sigma_{[i>} \Sigma_{<i\rangle}^{-1}, \quad \Sigma_{[i]}\right), i=2, \ldots, k$ are functionally independent.
The marginal model for X_{A}, for any $A \subseteq V$ complete, is an NEF.

DL (93) show that, then,
the distribution of the MLE of $\Sigma \in Q_{G}$ is weak hyper Markov.

The hyper Wishart, (cont’d)

The density of the hyper Wishart is therefore

$$
W_{Q_{G}}(p, \sigma ; d x) \propto \frac{\prod_{i=1}^{k} w_{c_{i}}\left(p, \sigma_{C_{i}} ; x_{C_{i}}\right)}{\prod_{i=2}^{k} w_{s_{i}}\left(p, \sigma_{S_{i}} ; x_{S_{i}}\right)} \mathbf{1}_{Q_{G}}(x) d x
$$

with $\quad w_{c_{i}}\left(p, \sigma_{C_{i}} ; x_{C_{i}}\right)=\frac{\left|x_{C_{i}}\right|}{\Gamma_{c_{i}}(p)\left|\sigma_{C_{i}}\right|^{p}} e^{-\left\langle x_{C_{i}}, \sigma_{C_{i}}^{-1}\right\rangle}$, that is

$$
W_{Q_{G}}(p, \sigma ; d x) \propto \exp -\left\langle x, \hat{\sigma}^{-1}\right\rangle \frac{\prod_{i=1}^{k}\left|x_{C_{i}}\right|^{p-\frac{c_{i}+1}{2}}}{\prod_{2=1}^{k}\left|x_{S_{i}}\right|^{p-\frac{s_{i}+1}{2}}} \mathbf{1}_{Q_{G}}(x) d x
$$

We note that

1. it is an NEF with only one shape parameter $p=\frac{n}{2}$
2. the expression of $W_{Q_{G}}(p, \sigma ; d x)$ does not depend on the chosen perfect order of the cliques.

The general $W_{Q_{G}}$ as an NEF on Q_{G}

We want several shape parameters rather than just p. The $W_{Q_{G}}(\alpha, \beta, \sigma)$ family of of distributions (LM 07):

$$
\left.W_{Q_{G}}(\alpha, \beta, \sigma) ; d x\right) \propto \frac{\prod_{i=1}^{k}\left|x_{C_{i}}\right|^{\alpha_{i}-\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left|x_{S_{i}}\right|^{\beta_{i} \frac{s_{i}+1}{2}}} e^{-\left\langle x, \hat{\sigma}^{-1}\right\rangle} \mathbf{1}_{Q_{G}}(x) d x,
$$

is the NEF generated by

$$
H_{G}(\alpha, \beta ; x) \mu_{G}(d y)=\frac{\prod_{i=1}^{k}\left(\operatorname{det} x_{C_{i}}\right)^{\alpha_{i}-\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left(\operatorname{det} x_{S_{i}}\right)^{\beta_{i}-\frac{s_{i}+1}{2}}} d y
$$

The $W_{Q_{G}}\left(\frac{n}{2}, \sigma\right)$, the hyper Wishart, is a special case of the $W_{Q_{G}}(\alpha, \beta, \theta)$ for $\quad \alpha_{i}=\frac{n}{2}, \quad \beta_{i}=\frac{n}{2}, \quad \theta=\hat{\sigma}^{-1}$.

The DY conjugate prior distribution for Σ

The hyper inverse Wishart distribution (DL93) on Q_{G} : a conjugate prior for Σ (in fact induced by the DY prior on Ω).
$\operatorname{HIW}\left(\frac{\delta+c_{i}-1}{2}, \frac{\delta+s_{i}-1}{2}, \theta ; d x\right) \propto \frac{\prod_{i=1}^{k}\left|x_{C_{i}}\right|^{-\frac{\delta+c_{i}-1}{2}-\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left|x_{S_{i}}\right|^{-\frac{\delta+s_{i}-1}{2}-\frac{s_{i}+1}{2}}} e^{-\left\langle\hat{x}^{-1}, \theta\right\rangle} \mathbf{1}_{Q_{G}}(x) d x$
Same problem: only one shape parameter
The inverse of the hyper inverse Wishart has density

$$
\begin{aligned}
W_{P_{G}}(\delta, \theta ; d y) & \propto \frac{\prod_{i=1}^{k}\left|x_{C_{i}}(y)\right|^{-\frac{\delta+c_{i}-1}{2}}+\frac{c_{i}+1}{2}}{\prod_{i=2}^{k}\left|x_{S_{i}}(y)\right|^{-\frac{\delta+s_{i}-1}{2}+\frac{s_{i}+1}{2}}} e^{-\langle y, \theta\rangle} \mathbf{1}_{P_{G}}(y) d y \\
& =|y|^{\frac{\delta-2}{2}} e^{-\langle y, \theta\rangle} \mathbf{1}_{P_{G}}(y) d y .
\end{aligned}
$$

The $W_{P_{G}}(\delta, \theta ; d y)$ is anatural exponential family.

The general $W_{P_{G}}$ as a NEF on P_{G}

The $W_{P_{G}}(\alpha, \beta, D)$ family of of distributions (LM 07)

$$
\left.W_{P_{G}}(\alpha, \beta, \theta) ; d y\right) \propto \frac{\prod_{i=1}^{k}\left|x_{C_{i}}(y)\right|^{\alpha_{i}+\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left|x_{S_{i}}(y)\right|^{\beta_{i}+\frac{s_{i}+1}{2}}} e^{-\langle y, \theta\rangle} \mathbf{1}_{P_{G}}(y) d y
$$

is the NEF generated by

$$
H_{G}(\alpha, \beta ; x(y)) \nu_{G}(d y)=\frac{\prod_{i=1}^{k}\left(\operatorname{det} x_{C_{i}}(y)\right)^{\alpha_{i}+\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left(\operatorname{det} x_{S_{i}}(y)\right)^{\beta_{i}+\frac{s_{i}+1}{2}}} d y
$$

The $W_{P_{G}}(\delta, \theta ; d y)$, inverse of the HIW, is a special case of the $W_{P_{G}}(\alpha, \beta, \theta)$ for $\quad \alpha_{i}=-\frac{\delta+c_{i}-1}{2}, \beta_{i}=-\frac{\delta+s_{i}-1}{2}$.

The $I W_{P_{G}}(\alpha, \beta, \theta)$ as a prior

The inverse $W_{P_{G}}$ is the $I W_{P_{G}}(\alpha, \beta, \theta)$, defined on Q_{G}

$$
I W_{P_{G}}((\alpha, \beta), \theta ; d \Sigma)
$$

$$
=\frac{1}{\Gamma_{I I}(\alpha, \beta)} \frac{\left|\theta_{C_{i}}\right|^{\alpha_{i}}}{\left|\theta_{S_{i}}\right|^{\beta_{i}}} \times \frac{\prod_{i=1}^{k}\left|\Sigma_{C_{i}}\right|^{\frac{\alpha_{i}}{2}-\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left|\Sigma_{S_{i}}\right|^{\frac{\beta_{i}}{2}-\frac{s_{i}+1}{2}}} e^{-\left\langle\hat{\Sigma}^{-1}, \theta\right\rangle} \mathbf{1}_{Q_{G}}(\Sigma) d \Sigma
$$

Clearly if $Z_{i} \sim N(0, \Sigma) \in \mathcal{N}_{G}$ and we write $U=\sum_{i=1}^{n} Z_{i} Z_{i}^{t}$

$$
\begin{aligned}
& \prod_{i=1}^{n} N\left(0, \Sigma ; d Z_{i}\right) I W_{P_{G}}((\alpha, \beta), \theta ; d \Sigma) \\
& \quad \propto \frac{\prod_{i=1}^{k}\left|\Sigma_{C_{i}}\right|^{\frac{\alpha_{i}-n}{2}-\frac{c_{i}+1}{2}}}{\prod_{i=2}^{k}\left|\Sigma_{S_{i}}\right|^{\frac{\beta_{i}-n}{2}-\frac{s_{i}+1}{2}}} e^{-\left\langle\hat{\Sigma}^{-1}, \theta+U\right\rangle} \mathbf{1}_{Q_{G}}(d \Sigma) \prod_{i=1}^{k} d Z_{i}
\end{aligned}
$$

The $I W_{P_{G}}$ is a conjugate prior for $\Sigma \in Q_{G}$.

The parameter sets for the $W_{Q_{G}}$ and $W_{P_{G}}$

For $\sigma \in Q_{G}$ and $\theta \in Q_{G}$, let

$$
\begin{aligned}
\mathcal{A}= & \left\{(\alpha, \beta): \int_{Q_{G}} e^{-\left\langle x, \hat{\sigma}^{-1}\right\rangle} H_{G}(\alpha, \beta ; x) \mu_{G}(d x)=\Gamma_{I}(\alpha, \beta) H_{G}(\alpha, \beta ; \sigma)\right\} \\
& \text { and }
\end{aligned}
$$

$\mathcal{B}=\left\{(\alpha, \beta): \int_{P_{G}} e^{-\langle y, \theta\rangle} H_{G}\left(\alpha, \beta ; \varphi(y) \nu_{G}(d y)=\Gamma_{I I}(\alpha, \beta) H_{G}(\alpha, \beta ; \theta)\right\}\right.$
where $\Gamma_{I}(\alpha, \beta)$ and $\Gamma_{I I}(\alpha, \beta)$ are functions of (α, β) only,
We define

- the $W_{Q_{G}}(\alpha, \beta, \sigma ; d x)$ for $(\alpha, \beta) \in \mathcal{A}, \sigma \in Q_{G}$
- the $W_{P_{G}}(\alpha, \beta, \theta ; d y)$ for $(\alpha, \beta) \in \mathcal{B}, \theta \in Q_{G}$.

Outline

- The Gaussian model
- The graphical Gaussian model \mathcal{N}_{G}
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

The hyper Markov property

Recall that

- the $I W_{P_{G}}$ is a conjugate prior for $\Sigma \in Q_{G}$ in \mathcal{N}_{G}
- the $H I W$ is the DY conjugate prior for $\Sigma \in Q_{G}$ in \mathcal{N}_{G}
$N_{X}(0, \Sigma)=N_{X_{C_{1}}}\left(0, \Sigma_{C_{1}}\right) \prod_{i=2}^{k} N_{X_{R_{i}} \mid X_{S_{i}}}\left(\Sigma_{R_{i}, S_{i}} \Sigma_{S_{i}}^{-1} x_{S_{i}}, \Sigma_{R_{i} \bullet S_{i}}\right)$
- the $H I W$ is strong hyper Markov, i.e., under the $H I W$

$$
\Sigma_{C_{1}}, \perp\left(\Sigma_{[i>} \Sigma_{<i>}^{-1}, \Sigma_{[i]}\right), i=2, \ldots, k
$$

To show the hyper Markov property, we change variables

$$
\Sigma \in Q_{G} \mapsto\left(\Sigma_{C_{1}},\left(\Sigma_{[i>} \Sigma_{<i>}^{-1}, \Sigma_{[i]}\right), i=2, \ldots, k\right)
$$

The normalizing constant for the $W_{P_{G}}$

We work in Q_{G}.

$$
\begin{aligned}
& \int_{Q_{G}} e^{-\left\langle\theta, \hat{x}^{-1}\right\rangle} \frac{\prod_{j=1}^{k}\left|x_{C_{j}}\right|^{\alpha_{j}-\frac{c_{j}+1}{2}}}{\prod_{S \in \mathcal{S}}\left|x_{S}\right|^{\nu(S)\left(\beta(S)-\frac{|S|+1}{2}\right)}} d x \\
& =\left.\int\left|x_{C_{1}}\right|^{\alpha_{1}-\frac{c_{1}+1}{2}} e^{-\left\langle x_{C_{1}}^{-1}, \theta_{C_{1}}\right\rangle} \prod_{j=2}^{k}\left|x_{[j]}\right|\right|^{\alpha_{j}-\frac{c_{j}+1}{2}} e^{-\left\langle x_{[j]}^{-1}, \theta_{[j]},\right\rangle} \\
& \prod^{k} e^{-\left\langle\left(x_{[j>} x_{<j>}^{-1}-\theta_{[j>} \theta_{<j>}^{-1}\right), x_{[j] .}^{-1}\left(x_{[j>} x_{<j>}^{-1}-\theta_{[j>} \theta_{<j>}^{-1}\right) \theta_{<j>}\right\rangle} \\
& j=2 \\
& \prod_{S \in \mathcal{S}}\left|x_{S}\right|^{\sum_{i \in J(P, S)}\left(\alpha_{i}-\frac{c_{i}+1}{2}\right)-\nu(S)\left(\beta(S)-\frac{|S|+1}{2}\right)} \\
& \frac{\prod_{S \in \mathcal{S}}\left|x_{S}\right|^{\sum_{i \in J(P, S)} c_{i}-\nu(S)|S|} d x_{C_{1}} \prod_{j=2}^{k} d\left(x_{[j>} x_{<j>}^{-1}\right) d x_{[j] \cdot .}}{}
\end{aligned}
$$

The strong Hyper Markov property

- For the $H I W$, i.e., when $\alpha_{i}=\frac{\delta+c_{i}-1}{2}, \beta_{i}=\frac{\delta+s_{i}-1}{2}$ The terms in red disappear!

And we obtain the normalizing constant and the strong hyper Markov property,

- For the general $W_{P_{G}}$, the terms do not disappear unless we choose (α, β) carefully.

This choice depends upon the chosen perfect order of the cliques, P : For $(\alpha, \beta) \in B_{P}$, we obtain

1. the normalizing constant $H_{G}(\alpha, \beta ; \theta) \Gamma_{I I}(\alpha, \beta)$
2. the strong directed hyper Markov property.

The set B_{P}

For a given perfect order P of the cliques, B_{P} is the set of (α, β) such that

1. $\sum_{j \in J(P, S)}\left(\alpha_{j}+\frac{1}{2}\left(c_{j}-s_{j}\right)\right)-\nu(S) \beta(S)=0$ for all S different from S_{2};
2. $-\alpha_{q}-\frac{1}{2}\left(c_{q}-s_{q}-1\right)>0$ for all $q=2, \ldots, k$ and $-\alpha_{1}-\frac{1}{2}\left(c_{1}-s_{2}-1\right)>0$
3. $-\alpha_{1}-\frac{1}{2}\left(c_{1}-s_{2}+1\right)-\gamma_{2}>\frac{s_{2}-1}{2}$ where $\gamma_{2}=$ $\sum_{j \in J\left(P, S_{2}\right)}\left(\alpha_{j}-\beta_{2}+\frac{c_{j}-s_{2}}{2}\right)$.
a set of linear constraints that reduces the number of free parameters to $k+1$: $\quad \beta_{2}, \alpha_{i}, i=1, \ldots, k$

$$
\mathcal{B} \supseteq \cup_{P} B_{P}
$$

The strong directed hyper Markov property

If $\Omega \sim W_{P_{G}}(\alpha, \beta, \theta)$, i.e. $\Sigma=\varphi(Y) \sim I W_{P_{G}}(\alpha, \beta, \theta)$ with $(\alpha, \beta) \in B_{P}$ and $\theta \in Q_{G}$, then

$$
\begin{aligned}
& \Sigma_{[12>} \mid \Sigma_{[1] .} \sim N_{\left(c_{1}-s_{2}\right) \times s_{2}}\left(\theta_{[12>}, 2 \theta_{<2>}^{-1} \otimes \Sigma_{[1]]}\right) \\
& \Sigma_{<2>} \sim i w_{s_{2}}\left(-\left(\alpha_{1}+\frac{c_{1}-s_{2}}{2}+\gamma_{2}\right), \theta_{<2>}\right) \\
& \Sigma_{[i] .} \sim i w_{c_{i}-s_{i}}\left(-\alpha_{i}, \theta_{[i]} .\right), i=1, \ldots, k \\
& \Sigma_{[j>} \Sigma_{<j>}^{-1} \mid \Sigma_{[j] .} \sim N_{\left(c_{j}-s_{j}\right) \times s_{j}}\left(\theta_{[j>} \theta_{<j>}^{-1}, 2 \theta_{<j>}^{-1} \otimes x_{[j]} .\right), \quad j=2, \ldots, \\
& \text { and }
\end{aligned}
$$

$$
\begin{equation*}
\left\{\left(\Sigma_{[12>}, \Sigma_{[1] .}\right), \Sigma_{<2>},\left(\Sigma_{[j>} \Sigma_{<j>}^{-1}, \Sigma_{[j]}\right), j=2, \ldots, k\right\} \tag{3}
\end{equation*}
$$

are mutually independent.
The $I W_{P_{G}}$ is strong directed hyper Markov.

An improper member of the $I W_{P_{G}}$ family

Let $\sigma=2 \Sigma$ and let ϕ be its Choleski parametrization:

$$
\phi=\left(\sigma_{[1]}^{-1}, \sigma_{[12>}, \sigma_{<2>}, \sigma_{[j]}^{-1}, \sigma_{[j>} \sigma_{<j>}^{-1}, j=2, \ldots, k\right)
$$

Since the the hyper Wishart is an NEF, we can use the method of Data and Ghosh (1995) to obtain the reference prior for the parameter $\sigma \in Q_{G}$ as

$$
\pi^{\sigma}(\sigma) \propto \frac{\left|\sigma_{C_{1}}\right|^{-\frac{c_{1}+1}{2}} \prod_{j=2}^{k}\left|\sigma_{C_{j}}\right|^{-\frac{c_{j}+1}{2}}}{\left|\sigma_{S_{2}}\right|^{\frac{c_{1}+c_{2}}{2}-s_{2}-\frac{s_{2}+1}{2}} \prod_{j=3}^{k}\left|\sigma_{S_{j}}\right|^{\frac{c_{j}-s_{j}}{2}}-\frac{s_{j}+1}{2}}
$$

It is an improper $I W_{P_{G}}(\alpha, \beta, 0 ; x)$ distribution with

$$
\alpha_{j}=0, j=1, \ldots, k, \quad \beta_{2}=\frac{c_{1}+c_{2}}{2}-s_{2}, \beta_{j}=\frac{c_{j}-s_{j}}{2}, j=3, \ldots
$$

The $W_{Q_{G}}$ is weak hyper Markov

If $X \sim W_{Q_{G}}(\alpha, \beta, \sigma)$ with $(\alpha, \beta) \in A_{P}$ and $\sigma \in Q_{G}$, then

$$
\begin{aligned}
x_{[1] .} & \sim w_{c_{1}-s_{2}}\left(\alpha_{1}-\frac{s_{2}}{2}, \sigma_{[1] .}\right) \\
x_{[12>} \mid x_{<2>} & \sim N_{\left(c_{1}-s_{2}\right) \times s_{2}}\left(\sigma_{[12>}, 2 x_{<2>}^{-1} \otimes \sigma_{[1]]}\right) \\
x_{<2>} & \sim w_{s_{2}}\left(\alpha_{1}+\delta_{2}, \sigma_{<2>}\right) \\
x_{[j>} x_{<j>}^{-1} \mid x_{<j>} & \sim N_{\left(c_{j}-s_{j}\right) \times s_{j}}\left(\sigma_{[j>} \sigma_{<j>}^{-1}, 2 x_{<j>}^{-1} \otimes \sigma_{[j] .} .\right) \\
x_{[j] .} & \sim w_{c_{j}-s_{j}}\left(\alpha_{j}-\frac{s_{j}}{2}, \sigma_{[j] .}\right), j=2, \ldots, k
\end{aligned}
$$

The distribution of $x_{[j>} x_{<j>}^{-1}$ depends upon $x_{<j>}$.

Outline

- The Gaussian model
- The graphical Gaussian model \mathcal{N}_{G}
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

Expected values

For the estimation of the covariance Σ, using the $I W_{P_{G}}$ as a prior, we will need

$$
E\left(W_{P_{G}}\right)^{-1} \quad \text { and } \quad E\left(I W_{P_{G}}\right)
$$

These are explicit expressions.
No need for MCMC computations.

The inverse of $E\left(W_{P_{G}}\right)$, i.e. $E(\Omega \mid S)^{-1}$

$[E(\Omega \mid S)]$
$=\left[E\left(W_{P_{G}}\left(\alpha_{j}-\frac{n}{2}, \beta_{j}-\frac{n}{2}, \theta+\kappa(n S)\right)\right]\right.$
$\left.\left.=-\frac{1}{2}\left[\sum_{j=1}^{k}\left(\alpha_{j}-\frac{n}{2}\right)(\theta+\kappa(n S))_{C_{j}}^{-1}\right)^{0}-\sum_{j=2}^{k}\left(\beta_{j}-\frac{n}{2}\right)(\theta+\kappa(n S))_{S_{j}}^{-1}\right)^{0}\right]$
explicit analytic expression: no recourse to MCMC

The $E\left(I W_{P_{G}}\right)$ computed layer by layer

$$
\begin{aligned}
& \text { Let } \xi=\theta+n S \\
& \qquad E\left(X_{<2>}\right)=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}}{2}+\gamma_{2}\right)-\frac{s_{2}+1}{2}}=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
\end{aligned}
$$

explicit analytic expression: computed sequentially

The $E\left(I W_{P_{G}}\right)$ computed layer by layer

$$
\text { Let } \xi=\theta+n S
$$

$$
E\left(X_{<2>}\right)=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}}{2}+\gamma_{2}\right)-\frac{s_{2}+1}{2}}=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

$$
E\left(X_{C_{1} \backslash S_{2}, S_{2}}\right)=\frac{\xi_{C_{1} \backslash S_{2}, S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

explicit analytic expression: computed sequentially

The $E\left(I W_{P_{G}}\right)$ computed layer by layer

$$
\text { Let } \xi=\theta+n S
$$

$$
E\left(X_{<2>}\right)=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}}{2}+\gamma_{2}\right)-\frac{s_{2}+1}{2}}=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

$$
\begin{aligned}
E\left(X_{C_{1} \backslash S_{2}, S_{2}}\right) & =\frac{\xi_{C_{1} \backslash S_{2}, S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)} \\
E\left(X_{C_{1} \backslash S_{2}}\right) & =\frac{\xi_{[1] .}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}+1}{2}\right)}\left(1-\frac{s_{2}}{2\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}\right)+\frac{\xi_{C_{1} \backslash S_{2}, S_{2}} \xi_{<2}^{-1} \xi_{S_{2}, C_{1} \backslash S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
\end{aligned}
$$

explicit analytic expression: computed sequentially

The $E\left(I W_{P_{G}}\right)$ computed layer by layer

$$
\text { Let } \xi=\theta+n S
$$

$$
E\left(X_{<2>}\right)=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}}{2}+\gamma_{2}\right)-\frac{s_{2}+1}{2}}=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

$$
\begin{aligned}
E\left(X_{C_{1} \backslash S_{2}, S_{2}}\right) & =\frac{\xi_{C_{1} \backslash S_{2}, S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)} \\
E\left(X_{C_{1} \backslash S_{2}}\right) & =\frac{\xi_{[1] .}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}+1}{2}\right)}\left(1-\frac{s_{2}}{2\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}\right)+\frac{\xi_{C_{1} \backslash S_{2}, S_{2}} \xi_{<2>}^{-1} \xi_{S_{2}, C_{1} \backslash S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)} \\
E\left(X_{R_{j}, S_{j}}\right) & =\xi_{[j>} \xi_{<j>}^{-1} E\left(X_{<j>}\right), \quad j=2, \ldots, k
\end{aligned}
$$

explicit analytic expression: computed sequentially

The $E\left(I W_{P_{G}}\right)$ computed layer by layer

$$
\text { Let } \xi=\theta+n S
$$

$$
E\left(X_{<2>}\right)=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}}{2}+\gamma_{2}\right)-\frac{s_{2}+1}{2}}=\frac{\xi_{<2>}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

$$
E\left(X_{C_{1} \backslash S_{2}, S_{2}}\right)=\frac{\xi_{C_{1} \backslash S_{2}, S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

$$
E\left(X_{C_{1} \backslash S_{2}}\right)=\frac{\xi_{[1]} .}{-\left(\alpha_{1}+\frac{c_{1}-s_{2}+1}{2}\right)}\left(1-\frac{s_{2}}{2\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}\right)+\frac{\xi_{C_{1} \backslash S_{2}, S_{2}} \xi_{<2>}^{-1} \xi_{S_{2}, C_{1} \backslash S_{2}}}{-\left(\alpha_{1}+\frac{c_{1}+1}{2}+\gamma_{2}\right)}
$$

$$
E\left(X_{R_{j}, S_{j}}\right)=\xi_{[j>} \xi_{<j>}^{-1} E\left(X_{<j>}\right), \quad j=2, \ldots, k
$$

$$
E\left(X_{R_{j}}\right)=\frac{\xi_{[j]} .}{-\left(\alpha_{j}+\frac{c_{j}-s_{j}+1}{2}\right)}\left(1+\frac{1}{2} \operatorname{tr}\left(\xi_{<j>}^{-1} E\left(X_{<j>}\right)\right)\right)
$$

$$
+\xi_{[j>} \xi_{<j>}^{-1} E\left(X_{<j>}\right) \xi_{<j>}^{-1} \xi_{<j]}
$$

explicit analytic expression: computed sequentially

Outline

- The Gaussian model
- The graphical Gaussian model \mathcal{N}_{G}
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

The loss functions

Loss functions for Σ and Ω

$$
\begin{array}{ll}
L_{1}(\tilde{\Sigma})=\operatorname{tr}\left(\tilde{\Sigma} \hat{\Sigma}^{-1}\right)-\log \left(\left|\tilde{\Sigma} \hat{\Sigma}^{-1}\right|\right)-r & L_{2}(\tilde{\Sigma})=\operatorname{tr}(\tilde{\Sigma}-\Sigma)^{2} \\
L_{1}(\tilde{\Omega})=\operatorname{tr}\left(\tilde{\Omega} \Omega^{-1}\right)-\log \left(\left|\tilde{\Omega} \Omega^{-1}\right|\right)-r & L_{2}(\tilde{\Omega})=\operatorname{tr}(\tilde{\Omega}-\Omega)^{2}
\end{array}
$$

Can we use them as is? It is important to note that

$$
\begin{aligned}
& L_{1}(\tilde{\Sigma})=\sum_{C \in \mathcal{C}} \operatorname{tr} \tilde{\Sigma}_{C} \Sigma_{C}^{-1}-\sum_{S \in \mathcal{S}} \operatorname{tr} \tilde{\Sigma}_{S} \Sigma_{S}^{-1}-\log \frac{\prod_{C \in \mathcal{C}}\left|\tilde{\Sigma}_{C}\right| \prod_{S \in \mathcal{S}}\left|\Sigma_{S}\right|}{\prod_{C \in \mathcal{C}}\left|\Sigma_{C}\right| \prod_{S \in \mathcal{C}}\left|\tilde{\Sigma}_{S}\right|} \\
& L_{2}(\tilde{\Sigma})=\Sigma_{(i, j) \in E}\left(\tilde{\Sigma}_{i j}-\Sigma_{i j}\right)^{2}
\end{aligned}
$$

Similarly $L_{1}(\tilde{\Omega}), L_{2}(\tilde{\Omega})$ only use the non zero entries of Ω

Our estimators

The Bayes estimators under L_{1}, L_{2} and the $I W_{P_{G}}$ on $\Sigma \in Q_{G} \quad$ (equivalently the $W_{P_{G}}$ on $\Omega \in P_{G}$)

Parameter of interest	L1	L2
Σ	$\tilde{\Sigma}_{L_{1}}=[E(\Omega \mid S)]^{-1}$	$\tilde{\Sigma}_{L_{2}}=E(\Sigma \mid S)$
Ω	$\tilde{\Omega}_{L_{1}}=[E(\Sigma \mid S)]^{-1}$	$\tilde{\Omega}_{L_{2}}=E(\Omega \mid S)$

The risk functions

Duality: The relationship between our Bayes estimators is as follows

$$
\begin{aligned}
& \tilde{\Sigma}_{L_{1}}=\pi\left(\left[\tilde{\Omega}_{L_{2}}\right]^{-1}\right) \\
& \tilde{\Sigma}_{L_{2}}=\pi\left(\left[\tilde{\Omega}_{L_{1}}\right]^{-1}\right)
\end{aligned}
$$

The risk functions We assess the quality of our estimators using risk comparison for:

$$
\begin{aligned}
& R_{L_{i}}\left(\tilde{\Sigma}_{L_{i}}\right)=E\left[L_{i}\left(\tilde{\Sigma}_{L_{i}}, \Sigma\right)\right], \quad i=1,2 \\
& R_{L_{i}}\left(\tilde{\Omega}_{L_{i}}\right)=E\left[\left(L_{i}\left(\tilde{\Omega}_{L_{i}}, \Omega\right)\right], \quad i=1,2\right.
\end{aligned}
$$

The prior, loss functions and estimators

We will use three different priors for Σ

- The $I W_{P_{G}}(\alpha, \beta, \theta)$ with $k+1$ free shape parameters
- The $\operatorname{HIW}(\delta, \theta)$ prior with 1 free shape parameter: a special case of the $I W_{P_{G}}$
- The reference prior: an objective prior
and two loss functions L_{1} and L_{2}, and four estimators
$E(\Omega \mid S)$ and its inverse $[E(\Omega \mid S)]^{-1}$
$E(\Sigma \mid S)$ and its inverse $[E(\Sigma \mid S)]^{-1}$
and the $M L E$ and the $M L E g$, that is the mle under the graphical model.
So, we have a total of eight estimators that we are going to study and compare.

Our approach: Bayesian graphical models

Bayesian graphical models combines the two approaches

- The graphical model is used as a tool for regularization
- The prior give us flexibility in the estimator

Traditional choice of priors

- The conjugate prior which is the Wishart $W_{r}(\delta, \theta)$ with one shape parameter δ and the scale parameter θ
- Various priors which give more flexibility for the parameters, (inverse gammas on the diagonal and independent normals on the triangular elements of the Choleski) but then you
lose conjugacy- - - problematic for computations in

"Two Cliques" study

Ω

Simple Example with 2 Cliques
$p=100$, and $n=75,100,500,1000, \mathrm{C} 1=70$ and $\mathrm{C} 2=40$
Scale Hyperparameter : $\theta=I$ or θ s.t. prior expected value of $\Sigma \in Q_{G}$ is I
Goal: Explore the flexibility of the IWpg

"Two Cliques" study - Risk compari

	$n=75$		$n=100$		$n=500$		$n=10$	
	$R_{1}(\Omega)$	$R_{1}(\Sigma)$	$R_{1}(\Omega)$	$R_{1}(\Sigma)$	$R_{1}(\Omega)$	$R_{1}(\Sigma)$	$R_{1}(\Omega)$	
Reference	212.7	66.61	60.71	40.93	7.02	6.66	3.33	
$H I W(3, I)$	98.76	59.28	80.72	43.41	7.76	7.18	3.54	
$I W_{P_{G}}\left(1 / 2 c_{i}, D\right)$	29.99	25.18	24.53	24.49	6.37	6.21	3.27	
$I W_{P_{G}}\left(1 / 2 c_{i}, I\right)$	207.4	67.88	116.7	49.78	8.69	7.80	3.76	
$I W_{P_{G}}\left(1 / 4 c_{i}, D\right)$	red22.18	red 17.96	red18.57	red15.87	red5.67	red5.43	red3.03	r
$I W_{P_{G}}\left(1 / 4 c_{i}, I\right)$	165.5	63.10	96.14	46.20	8.14	7.43	3.67	
$I W_{P_{G}}\left(1 / 10 c_{i}, D\right)$	35.71	31.99	31.59	27.02	6.77	6.41	3.32	
$I W_{P_{G}}\left(1 / 10 c_{i}, I\right)$	141.7	60.23	89.67	45.03	7.98	7.32	3.59	
MLEg	813.9	70.72	154.6	43.51	8.13	6.79	3.62	
MLE	-	-	7.3×10^{8}	102.5	14.45	10.85	6.00	
Risk Reduc. vs MLEg	red97\%	red 75%	red88\%	red64\%	red30\%	red20\%	red16\%	r

"Two Cliques" study - Scree Plots

Call-center data: Fitting a Graphical model

Dataset also analyzed by Huang et al. (2006) and Bickel and Levina(2006)
Records from a call-center of a major financial institution
Phone call from 7:00am till midnight during 2002 (on week days only)
Recording period of 10-minute intervals during 17 hours Number of calls in each period $N_{i j}, i=1,2, . .239$ and $j=1,2, . ., 102$ was recorded.
Standard transformation $x_{i j}=\left(N_{i j}+\frac{1}{4}\right)^{\frac{1}{2}}$ applied to make data closer to Normal

First 205 data points as training data and remaining 34 as test data

Call-center data: Fitting a Graphical model

Aim: Choose the "best" graphical model for the data, among models with banded inverse covariance matrices.
Criterion 1: K-fold cross-validation error ($K=10$).
We predict the second half of day given first half for the test data set after training our estimators on the training data set

$$
x=\binom{x^{(1)}}{x^{(2)}}, \quad \mu=\binom{\mu_{1}}{\mu_{2}}, \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{1} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{2}
\end{array}\right)
$$

The best linear predictor for $x_{i}^{(2)}$ from $x_{i}^{(1)}$ is

$$
x_{i}^{(2)}=\mu_{2}+\Sigma_{21} \Sigma_{1}^{-1}\left(x_{i}^{(1)}-\mu_{1}\right)
$$

Call-center data: Fitting a Graphical model.

Criteria 2: Bayesian model selection
Maximizing posterior probabilities for the model: we choose G_{k} with maximum posterior probability i.e.

$$
P\left(G_{k} \mid y\right) \propto p\left(y \mid G_{k}\right) p\left(G_{k}\right)
$$

where

$$
P\left(y \mid G_{k}\right)=\int N\left(y \mid \Sigma_{k}\right) I W_{P_{G}}\left(\alpha, \beta, \theta ; \Sigma_{k}\right) d \Sigma_{k}
$$

...with some abuse of notation.
In fact $P\left(y, G_{k}\right)$ is equal to the ratio of normalizing constants for the prior and posterior distributions and these are known explicitly for the $I W_{P_{G}}$.

Differential banding

Differential banding illustration

Prediction error

Forecast error for selected banded and "differentially banded" models

Outline

- The Gaussian model
- The graphical Gaussian model \mathcal{N}_{G}
- The $W_{Q_{G}}$ and $W_{P_{G}}$ Wisharts
- The hyper Markov property
- The expected values of $W_{Q_{G}}$ and $I W_{P_{G}}$
- Decision theoretic estimation of Σ
- Another Wishart?

The MLE for missing data

Question: Is the $W_{Q_{G}}$ the distribution of the MLE of Σ ?

The notation

$$
\begin{aligned}
\mathbf{Z}^{t} & =\left(Z_{1}^{t}, Z_{2}^{t}, Z_{3}^{t}, Z_{4}^{t}\right) \\
\mathbf{Z}_{\mathbf{i}}^{t} & =\left(Z_{1}^{t}, Z_{i}^{t}\right), i=2,3,4
\end{aligned}
$$

Z_{i} is a $p_{i} \times 1$ vector
The data

$$
\begin{gathered}
\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}, \quad\left(Z_{1}\right)_{1}, \ldots,\left(Z_{1}\right)_{n_{1}}, \quad \mathbf{Z}_{\mathbf{i} 1}, \ldots, \mathbf{Z}_{\mathbf{i} n_{i}}, i=2,3,4 \\
V_{0}=\sum_{j=1}^{n} \mathbf{Z}_{j} \mathbf{Z}_{j}^{t}, \quad V_{1}=\sum_{j=1}^{n_{1}}\left(Z_{1}\right)_{j}\left(Z_{1}\right)_{j}^{t}, \quad V_{i}=\sum_{j=1}^{n_{i}} \mathbf{Z}_{\mathbf{i} j} \mathbf{Z}_{\mathbf{i} j}^{t}, i=2,3,4
\end{gathered}
$$

The MLE for missing data: notation

$$
\begin{gathered}
v_{0}=\left(v_{0 l m}, l, m=1, \ldots k\right), \quad v_{i}=\left(\begin{array}{ll}
v_{i 11} & v_{i 1 i} \\
v_{i i 1} & v_{i i i}
\end{array}\right), i=1,2,3,4 \\
v_{(0 i)}=\left(\begin{array}{cc}
v_{011} & v_{01 i} \\
v_{0 i 1} & v_{0 i i}
\end{array}\right), w_{i}=\left(\begin{array}{ll}
v_{011}+v_{i 11} & v_{01 i}+v_{i 1 i} \\
v_{0 i 1}+v_{i i 1} & v_{0 i i}+v_{i i i}
\end{array}\right), i=2,3,4 \\
\rho_{i 1}
\end{gathered}=\left(v_{0 i 1}+v_{i 21}\right)\left(v_{011}+v_{i 11}\right)^{-1}=\rho_{1 i}^{t} .
$$

The MLE: Sun and Sun 07

i. Based on the incomplete data as given above, the maximum likelihood estimate $\hat{\Sigma}$ of $\Sigma \in Q_{G}$ is given by the elements of its Choleski decomposition as follows

$$
\begin{aligned}
\hat{\Sigma}_{11} & =\frac{s_{1}}{m_{1}} \\
\hat{\Sigma}_{i 1} \hat{\Sigma}_{11}^{-1} & =\widehat{\Sigma_{i 1} \Sigma_{11}^{-1}}=\rho_{i 1}, i=2, \ldots, k \\
\widehat{\Sigma_{i i \cdot 1}} & =\frac{w_{i \cdot 1}}{m_{i}}, i=2, \ldots, k
\end{aligned}
$$

We want the joint distribution of $\left(s_{1}, \rho_{i}, w_{i \cdot 1}, i=2,3,4\right)$

The $W_{Q_{G}}$ for our graph

$$
\begin{align*}
& W_{Q_{G}}^{*}\left(\alpha, \beta, \sigma ; d s_{1}, d \rho_{i 1}, w_{i \cdot 1}, \quad i=, 2,3,4\right) \tag{4}\\
\propto & \left|s_{1}\right|^{\frac{n+n_{1}+\sum_{i=2}^{k} n_{i}}{2}-\frac{p_{1}+1}{2}} \exp -\frac{1}{2}\left\langle s_{1}, \Sigma_{11}^{-1}\right\rangle \\
& \times \prod_{i=2}^{4}\left|s_{1}\right|^{\frac{p_{i}}{2}} \exp -\frac{1}{2}\left\langle\left(\rho_{i 1}-\Sigma_{i 1} \Sigma_{11}^{-1}\right), \Sigma_{i \cdot 1}^{-1}\left(\rho_{i 1}-\Sigma_{i 1} \Sigma_{11}^{-1}\right)^{t} s_{1}\right\rangle \\
& \times \prod_{i=2}^{k}\left|w_{i \cdot 1}\right|^{\frac{n+n_{i}-p_{i}}{2}}-\frac{p_{i}+1}{2} \\
& \exp -\frac{1}{2}\left\langle w_{i \cdot 1}, \Sigma_{i \cdot 1}^{-1}\right\rangle
\end{align*}
$$

The MLE:the ingredients

$$
\begin{aligned}
w_{0} & =\pi\left(v_{0}\right)=\left(\begin{array}{cccc}
v_{011} & v_{012} & v_{013} & v_{014} \\
v_{021} & v_{022} & * & * \\
v_{031} & * & v_{033} & * \\
v_{041} & * & * & v_{044}
\end{array}\right) \sim W_{Q_{G}}\left(\frac{n}{2}, \frac{n}{2}, \hat{\Sigma}^{-1}\right) \\
v_{1} & \sim W_{p_{1}}\left(\frac{n_{1}}{2}, \Sigma_{11}\right), \quad w_{i} \sim W_{p_{1}+p_{i}}\left(\frac{n+n_{i}}{2}, \Sigma_{(1 i)}\right), i=2,3,4
\end{aligned}
$$

Recall $v_{0}, v_{1}, v_{i}, i=2,3,4$ are independent BUT
the w_{i} 's are NOT independent. They have v_{011} in common.

A few Jacobians later

$$
f\left(s_{1}, \rho_{i}, w_{i \cdot 1}, i=2, \ldots, k\right)
$$

$$
\propto\left|s_{1}\right|^{\frac{n+n_{1}+\sum_{i=2}^{k}\left(n_{i}+p_{i}\right)}{2}-\frac{p_{1}+1}{2}} \exp -\frac{1}{2}\left\langle s_{1}, \Sigma_{11}^{-1}\right\rangle
$$

$$
\times \int_{\mathcal{D}}\left|l_{0}\right|^{\frac{n}{2}-\frac{p_{1}+1}{2}}\left|I_{p_{1}}-l_{0}-\sum_{i=2}^{k} l_{i}\right|^{\frac{n_{1}}{2}-\frac{p_{1}+1}{2}} \prod_{i=2}^{k}\left|l_{i}\right|^{\frac{n_{i}}{2}-\frac{p_{1}+1}{2}}
$$

$$
\times \prod_{i=2}^{k}\left|l_{0}+l_{i}\right|^{\frac{p_{i}}{2}} \exp -\frac{1}{2}\left(\rho_{i 1}-\xi_{i 1}\right), \xi_{i \cdot 1}^{-1}\left(\rho_{i 1}-\xi_{i 1}\right)^{t} \sigma\left(l_{0}+l_{i}\right) \sigma^{t}
$$

$$
\times d l_{0} \prod_{i=2}^{k} d l_{i} \times \prod_{i=2}^{k}\left|w_{i \cdot 1}\right|^{\frac{n+n_{i}-p_{i}}{2}-\frac{p_{i}+1}{2}} \exp -\frac{1}{2}\left\langle w_{i \cdot 1}, \Sigma_{i \cdot 1}^{-1}\right\rangle
$$

where $s_{1}=\sigma \sigma^{t}, \sigma$ is a lower triangular matrix.

Another Wishart?

Nearly the $W_{Q_{G}}$ but not the $W_{Q_{G}}$!

