Gaussian Covariance Decomposition for PC-algorithm

Dhafer Malouche

LEGI-EPT-ESSAI
Uty, November 7th Carthage, Tunisia,

Mathematical Aspects of Graphical Models
 Durham, July 2008

Graphical Models : Notations

- $G=(V, E)$ an undirected graph
- V set of vertices
- E set of edges : $(u, v) \in E \Longleftrightarrow(v, u) \in E$
- $u \sim_{G} v \Longleftrightarrow(u, v) \in E$,
$\mathrm{ne}_{G}(u)=\left\{v, v \sim_{G} u\right\}$ neighbors of u.
- $p(u, v, G)=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ is a path between u and v in G if $u_{0}=u, u_{n}=v$ and $\forall i=0, \ldots(n-1), u_{i} \sim_{G} u_{i+1}$, and the u_{i} 's are distinct.
$|p(u, v, G)|=n$ is the length of $p(u, v, G)$.
- $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right), G \subseteq G^{\prime} \Longleftrightarrow E \subseteq E^{\prime}$

Graphical Models : Markov Property (MP)

- $\mathbf{X}=\mathbf{X}_{v}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}(\mu, \Sigma)$ is Gaussian r.v.
$\Sigma:|V| \times|V|$ covariance matrix and $K=\Sigma^{-1}$ is the precision matrix.
- $K \longmapsto G(K)=G:$

$$
u \not \chi_{G} v \Longleftrightarrow k_{u v}=0 \quad \text { (Pairwise } M P \text {) }
$$

In Gaussian case
$k_{u v}=0 \Longleftrightarrow X_{u} \Perp X_{v} \mid \mathbf{X}_{-u v}=\left(X_{w}, w \neq u \text { and } v\right)^{\prime}$.

- A, B and S three disjoints subsets of V :
S separates A and $B \Rightarrow \mathbf{X}_{A} \Perp \mathbf{X}_{B} \mid \mathbf{X}_{S}$ (Global MP)

Graphical Models : Perfect Markov distributions

- In Gaussian case : (Pairwise) \Longleftrightarrow (Global)
- The inverse in (Global) is not always true :

Graphical Models : Perfect Markov distributions

- In Gaussian case : (Pairwise) \Longleftrightarrow (Global)
- The inverse in (Global) is not always true :

$$
\begin{gathered}
\Sigma=\left(\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 2 & 0 \\
-1 & 0 & 0 & 2
\end{array}\right), K=\left(\begin{array}{cccc}
0.4 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.6 & 0.1 & 0.1 \\
0.2 & 0.1 & 0.6 & 0.1 \\
0.2 & 0.1 & 0.1 & 0.6
\end{array}\right) \\
\Sigma_{\{2,3,4\}}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right),\left(\Sigma_{\{2,3,4\}}\right)^{-1}=\left(\begin{array}{ccc}
.5 & 0 & 0 \\
0 & .5 & 0 \\
0 & 0 & .5
\end{array}\right) \\
G=G(K) \text { is complete, } X_{2} \Perp X_{3} \mid X_{4}
\end{gathered}
$$

Graphical Models : Perfect Markov distributions

Definition

The distribution P of a r.v. \mathbf{X}_{V} is Perfectly Markov to G if

$$
S \text { separates } A \text { and } B \Longleftrightarrow \mathbf{X}_{A} \Perp \mathbf{X}_{B} \mid \mathbf{X}_{S}
$$

Graphical Models : Perfect Markov distributions

Definition

The distribution P of a r.v. \mathbf{X}_{V} is Perfectly Markov to G if

S separates A and $B \Longleftrightarrow \mathbf{X}_{A} \Perp \mathbf{X}_{B} \mid \mathbf{X}_{S}$

Theorem, Meek 1995

For any undirected graph $G=(V, E), \exists P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$ such that $G(K)=G$ and P is perfectly Markov to G.

Theorem, Geiger et al. 2000

If $G=G(K)$ is a tree, then for all $P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$ such that $G(K)=G, P$ is perfectly Markov to G.

Problem :

- $X^{(1)}, \ldots, X^{(N)}$ i.i.d. $P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$.

Estimate $G=G(K)$ in the case $N \leq|V|$, No MLE of $K \ldots$?

Problem :

- $X^{(1)}, \ldots, X^{(N)}$ i.i.d. $P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$.

Estimate $G=G(K)$ in the case $N \leq|V|$, No MLE of $K \ldots$?

- Proposed solution : Naive PC-algorithm
(1) test marginal independence: $H_{0}^{u v}: X_{u} \Perp X_{v}, \forall u, v$.
(2) test conditional independence given 1 variable

$$
H_{0}^{u v \mid w}: X_{u} \Perp X_{v} \mid X_{w}, \forall u, v, w
$$

(3) test conditional independence given 2 variables

$$
H_{0}^{u v \mid S}: X_{u} \Perp X_{v} \mid \mathbf{X}_{S}, \forall u, v, \text { and } S \subseteq V \backslash\{u, v\},|S|=2
$$

.....and so on.

Questions ??

- Do I obtain the true graph?
- What is the needed number of conditioning variables ?
- Should I test on all the subsets with cardinality k ?

PC-algorithms and Variations

- 0-1-procedure : Marginal Independence and Condition on 1 variable (Friedman et al 2000, Magwene and Kim 2004, Wille and Bühlman 2006)
- PC-algorithm and variations:
- Skeleton Bayesian Networks : Verma and Pearl 1991, Steck and Tresp 1999, Spirtes et al. 2000, Kalish and Bühlman 2007...
- Undirected graphs : Castello and Roverato 2006 (qp-procedure), Malouche and Sevestre 2008 (uPC-algorithm).

k-graphs

Definition

$\mathbf{X}=\left(X_{U}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$
$G_{k}=G_{k}(P)=\left(V, E_{k}\right)$ is called a k-graph, if

$$
u \not \not_{G_{k}} v \Longleftrightarrow\left\{\begin{array}{l}
\exists S \subseteq v \backslash\{u, v\},|S|=k, \\
X_{u} \Perp X_{v} \mid \mathbf{X}_{S}
\end{array}\right.
$$

k-graphs

Definition

$\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$
$G_{k}=G_{k}(P)=\left(V, E_{k}\right)$ is called a k-graph, if

$$
u \not \overbrace{G_{k}} v \Longleftrightarrow\left\{\begin{array}{l}
\exists S \subseteq v \backslash\{u, v\},|S|=k, \\
x_{u} \Perp X_{v} \mid \mathbf{X}_{S}
\end{array}\right.
$$

Examples.

- 0-graph : $G_{0}(P)=G(\Sigma)$ is the covariance graph (or bi-directed graph)
- $(|V|-2)$-graph : $G_{|V|-2}(P)=G(K)$ is the concentration graph

Separability order

$G=(V, E)$ an undirected graph

Definition

Separability order of G : if $u \not \chi_{G} v$

$$
\begin{aligned}
\operatorname{so}(u, v, G)= & \min \{|S|, S \text { is a separator of } u \text { and } v\} \\
& \operatorname{so}(G)=\max _{u \nsim G^{v}} \operatorname{so}(u, v, G)
\end{aligned}
$$

Remarks.

- $\operatorname{so}(u, v, G)=0 \Longleftrightarrow$
u and v belong to different connected components
- $\operatorname{so}(G)=0 \Longleftrightarrow G$ is union of disconnected complete graphs.

The uPC-theorem

Theorem, $\mathrm{M} \neg$ and Sevestre 2008

$$
\begin{aligned}
\mathbf{X}= & \left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right) . \\
& G=G(K) \text { the concentration graph } \\
& G_{k}=G(P) \text { the } k \text {-graph }
\end{aligned}
$$

Assume that
i. P is perfectly Markov to G
ii. $\operatorname{so}(G)=m$
iii. $\operatorname{so}\left(G_{0}\right)<|V|-2$.

Then

$$
G=G_{m} \subseteq G_{m-1} \subseteq \ldots G_{1} \subseteq G_{0}
$$

Remarks

- uPC-theorem remains true for categorical multivariate r.v.
- $G_{1} \subseteq G_{0}$ can be obtained using Global Markov Property on G_{0}.
- uPC-procedure : Estimate \widehat{G}_{0}, then $\widehat{G}_{1}, \ldots, \widehat{G}_{k}$ till $\mathrm{so}\left(\widehat{G}_{k}\right)=k$.
- Questions :
- Can we check the no Perfect Markovianity from G_{0} ?
- Which conditioning subset of variables should I consider ?

Covariance Decomposition

Theorem, Jones and West 2005

$\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$.

$$
G=G(K) \text { the concentration graph }
$$

$$
G_{0}=G_{0}(P)=G(\Sigma) \text { the } 0 \text {-graph }
$$

For all u and v in V

$$
k_{u v}=\sum_{p=p\left(u, v, G_{0}\right)}(-1)^{|p|+1} \sigma_{p} \frac{|\Sigma \backslash p|}{|\Sigma|}
$$

and

$$
\sigma_{u v}=\sum_{p=p(u, v, G)}(-1)^{|p|+1} k_{p} \frac{|K \backslash p|}{|K|}
$$

where $\sigma_{p}=\sigma_{u_{0} u_{1}} \ldots \sigma_{u_{n-1}} u_{n}$ and $k_{p}=k_{u_{0} u_{1}} \ldots k_{u_{n-1} u_{n}}$ if $p=\left(u_{0}, \ldots, u_{n}\right)$.

Consequences

- If G is a tree then G_{0} is complete
- If G_{0} is a tree then G is complete, and P could not be Perfectly Markov to G.

Consequences

- If G is a tree then G_{0} is complete
- If G_{0} is a tree then G is complete, and P could not be Perfectly Markov to G.

Proposition

$$
\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)
$$

$$
G=G(K) \text { the concentration graph }
$$

$$
G_{0}=G_{0}(P)=G(\Sigma) \text { the } 0-\text { graph }
$$

If $\exists u \nsim G_{0} v$ and \exists ! $p\left(u, v, G_{0}\right),|p| \geq 2$ then P is not perfectly Markov to G.

Proof

Proof.

(1) If P is perfectly Markov to G, then $G \subseteq G_{0}$
(2) $u \not \chi_{G_{0}} v$, then $u \not \chi_{G} v$ and $k_{u v}=0$
(3) If $p=p\left(u, v, G_{0}\right)=\left(u_{0}, \ldots, u_{n}\right)$ is the path connecting u and v in G_{0}, then

$$
k_{u v}=(-1)^{n+1} \sigma_{u u_{1}} \ldots \sigma_{u_{n-1} v} \frac{|\Sigma \backslash p|}{|\Sigma|} \neq 0
$$

Contradiction.

Subset of conditioning variables, 1st Result

For all $u, v \in V$

$$
T(u, v, G)=\{w \in V \backslash\{u, v\}, \exists p(u, w, G) \nexists v \text { and } p(w, v, G) \not \supset u\}
$$

Subset of conditioning variables, 1st Result

For all $u, v \in V$

$$
T(u, v, G)=\{w \in V \backslash\{u, v\}, \exists p(u, w, G) \nexists v \text { and } p(w, v, G) \not \supset u\}
$$

Theorem

$\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$.

- G_{0} is the 0 -graph.
- $u, v \in V, S \subseteq V \backslash\{u, v\}$

Assume that $S \cap T\left(u, v,\left(G_{0}\right)_{(S \cup\{u, v\})}\right)=\emptyset$, then

$$
X_{u} \Perp X_{v} \Longleftrightarrow X_{u} \Perp X_{v} \mid \mathbf{X}_{S}
$$

An example

$\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)^{\prime}$

G_{0}

$\left(G_{0}\right)_{\{1,2,3,4\}}$

$$
\begin{gathered}
S=\{3,4\} \text { and } u=1, v=2 \\
k_{12 \mid 34}=0 \Longleftrightarrow \sigma_{12}=0
\end{gathered}
$$

Proof

Proof.

(1) If $X_{u} \Perp X_{v}$, Condition $S \cap T\left(u, v,\left(G_{0}\right)_{(S \cup\{u, v\})}\right)=\emptyset$ implies
$\left(G_{0}\right)_{(S \cup\{u, v\})}$ contains at least two connected components $S_{1} \ni u$ and $S_{2} \ni v$.

$$
\Rightarrow k_{u v \mid S}=0 .
$$

(2) If $X_{u} \not \perp X_{v}$, then $\sigma_{u v} \neq 0$, and

$$
k_{u v \mid S}=(-1)^{1+1} \sigma_{u v} \frac{\left|\Sigma_{S}\right|}{\left|\Sigma_{(S \cup\{u, v\})}\right|} \neq 0
$$

From $k-1$ to k ?

Theorem

$\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$.
G_{0} is the 0 -graph, $u, v \in V, S \subseteq V \backslash\{u, v\}$, and $w \in V \backslash(S \cup\{u, v\})$.
If
i. $w \notin \mathrm{ne}_{G_{0}}(u) \cap \mathrm{ne}_{G_{0}}(v)$
ii. $w \notin \mathrm{ne}_{G_{0}}(S)$

Then

$$
X_{u} \Perp X_{v}\left|\mathbf{X}_{S} \Longleftrightarrow X_{u} \Perp X_{v}\right| \mathbf{X}_{S \cup\{w\}}
$$

Proof

Proof.

W.I.g. assume $w \sim_{G_{0}} u$ and $w \not \chi_{G_{0}} v$.

$$
\Sigma_{S \cup\{u, w\} \times S \cup\{v, w\}}=\left(\begin{array}{ccccc}
\sigma_{w w} & 0 & 0 & \ldots & 0 \\
\sigma_{w u} & & & \\
0 & \Sigma_{S \cup\{u\} \times S \cup\{v\}} \\
0 & &
\end{array}\right)
$$

Then

$$
\left|\Sigma_{S \cup\{u, w\} \times S \cup\{u, w\}}\right|=\sigma_{w w}\left|\Sigma_{S \cup\{u\} \times S \cup\{v\}}\right|
$$

Subset of conditioning variables

Corollary

$\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$ Perfectly Markov to
$G=G(K)$.

- $u, v \in V, u \sim_{G_{k-1}} v$
- $S \subseteq V \backslash\{u, v\},|S|=k$.

Assume that $\exists w \in S$ satisfying
i. $w \notin \mathrm{ne}_{G_{0}}(u) \cap \mathrm{ne}_{G_{0}}(v)$
ii. $w \notin \mathrm{ne}_{G_{0}}(S \backslash\{w\})$

Then

$$
X_{u} \not \perp X_{v} \mid \mathbf{X}_{S}
$$

A last result !

Definition

Let $G \subseteq G_{0} . P_{G} \subseteq V$ defined as follows :

$$
\begin{aligned}
u \in P_{G} \Longleftrightarrow & \exists \text { a path } p \ni u,|p| \geq 2 \text { and } \\
& \left\{\begin{array}{l}
G \backslash p \text { disconnected } \\
p \ni w, w \not \chi_{G_{0}} u
\end{array}\right.
\end{aligned}
$$

Proposition

$\mathbf{X}=\left(X_{u}, u \in V\right)^{\prime} \sim P=\mathcal{N}_{|V|}\left(\mu, K=\Sigma^{-1}\right)$.
P is Perfectly Markov to $G=G(K)$ and G_{0} connected. Let $u, v \in V, u \sim_{G_{k-1}} v$.
Assume that u or $v \in P_{G_{k-1} \backslash\{u, v\}}$. Then

$$
u \sim_{G_{k}} v
$$

Proof

Proof.

Assume $u \not \chi_{G_{k}} v$ and $u \in P_{G_{k-1} \backslash\{u, v\}}$:
$p\left(u, w, G_{k-1} \backslash(u, v)\right)=\left(u_{0}, \ldots, u_{n}\right)$

- If $\exists i$, such that $u_{i} \not \chi_{G} u_{i+1}$. Then G becomes disconnected (G connected $\Longleftrightarrow G_{0}$ connected) : Contradiction.
- Then $p\left(u, w, G_{k-1} \backslash(u, v)\right)=p(u, w, G) \Rightarrow \sigma_{u w} \neq 0$.

Contradiction.

So which are the remaining conditioning subsets?

$$
u \sim_{G_{k-1}} v
$$

$$
\mathcal{S}_{k}(u, v)=\left\{S \subseteq V \backslash\{u, v\},|S|=k \text {, such that } X_{u} \Perp X_{v} \mid \mathbf{X}_{S}\right.
$$ could not be deduced from the step $k-1\}$

So which are the remaining conditioning subsets?

$$
u \sim_{G_{k-1}} v
$$

$$
\mathcal{S}_{k}(u, v)=\left\{S \subseteq V \backslash\{u, v\},|S|=k \text {, such that } X_{u} \Perp X_{v} \mid \mathbf{X}_{S}\right.
$$ could not be deduced from the step $k-1\}$

Proposition

Let $u \sim_{G_{k-1}} v$. Assume that u and v are $\notin P_{G_{k-1} \backslash\{u, v\}}$. Let $S \subseteq V \backslash\{u, v\}$ and $|S|=k$.

$$
S \in \mathcal{S}_{k}(u, v) \Longleftrightarrow S=T\left(u, v,\left(G_{0}\right)_{S \cup\{u, v\}}\right)
$$

Proof.

By induction on k.

Example

Example

Example

$$
\begin{aligned}
& \text { So }\left(G_{0}\right)=2 \\
& \mathrm{CI} \text { Tests } \\
& 3 \Perp 4 \mid\{6\} \\
& 3 \Perp 5 \mid\{6\} \\
& 3 \Perp 6|\{4\}, 3 \Perp 6|\{5\} \\
& 4 \Perp 6 \mid\{3\} \\
& 5 \Perp 6 \mid\{3\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { Co } \\
& \mathrm{Cl}\left(G_{0}\right)=2 \\
& 3 \Perp 4 \mid\{6\} \\
& 3 \Perp 5 \mid\{6\} \\
& 3 \Perp 6|\{4\}, 3 \Perp 6|\{5\} \\
& 4 \Perp 6 \mid\{3\} \\
& 5 \Perp 6 \mid\{3\}
\end{aligned}
$$

Example

Example

Example

Example

Example

$$
\begin{aligned}
& \text { Co } \\
& \text { so }\left(G_{0}\right)=2 \\
& \mathrm{CI} \text { Tests } \\
& 3 \Perp 4 \mid\{6\} \\
& 3 \Perp 5 \mid\{6\} \\
& 3 \Perp 6|\{4\}, 3 \Perp 6|\{5\} \\
& 4 \Perp 6 \mid\{3\} \\
& 5 \Perp 6 \mid\{3\}
\end{aligned}
$$

