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Motivation : the Wishart distributions on de-

composable graphs.

We denote by Sn the space of symmetric real

matrices of order n and by Pn ⊂ Sn the cone

of positive definite matrices. Let G = (V, E)
be a decomposable graph with V = {1, . . . , n}.
The subspace ZSG ⊂ Sn is the space of sym-

metric matrices (sij) with zeros prescribed by

G, that means sij = 0 when {i, j} /∈ E. We de-

note

PG = ZSG ∩ Pn.

A space isomorphic to ZSG is the space ISG
of symmetric incomplete matrices which are

actually real functions on the union of the set

V and the set E of edges.
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We denote by π the natural projection of Sn
on ISG and denote QG = π(P−1

G ). Three equi-

valent properties

1. QG = π(P−1
G ) (definition)

2. QG is the open convex cone which is the

dual of the cone PG.

3. the restriction xC of x ∈ QG to any clique

C is positive definite (Hélène’s definition).
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Example : If

G = •1− •2− •3

the cone PG is the set of positive definite

matrices of the form y1 y12 0
y12 y2 y23
0 y32 y3



The cone QG is the set of incomplete ma-

trices of the form x1 x12
x12 x2 x23

x32 x3


such that the two submatrices associated to

the two cliques[
x1 x12
x12 x2

]
,

[
x2 x23
x32 x3

]
are positive definite.
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The bijection between PG and QG. Let G de-

composable, let C and S be the families of

cliques and minimal separators. If x ∈ QG de-

fine the Lauritzen function :

y = ψ(x) =
∑
C∈C

[x−1
C ]0 −

∑
S∈S

ν(S)[x−1
S ]0

where [a]0 means ’extension by zeros’ of a

principal submatrix a of Sn and where ν(S)

is a certain positive integer called multiplicity

of S.

Theorem 1. The map

x 7→ y = ψ(x)

is a diffeomorphism from QG onto PG. Its in-

verse y 7→ x from PG onto QG is x = π(y−1).
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Let us fix α : C → R and β : S → R and let us

introduce the function x 7→ H(α, β;x) on QG
by

H(α, β;x) =

∏
C∈C det(xC)α(C)∏

S∈S det(xS)ν(S)β(S)
.

Define the measure on QG by

µG(dx) = H(−
1

2
(|C|+1),−

1

2
(|S|+1;x)1QG(x)dx.
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Perfect orderings of the cliques. Let C be the

family of the k cliques of the connected graph

(not necessarily decomposable). Consider a

bijection P : {1, . . . , k} → C and

SP (j) = [P (1) ∪ P (2) ∪ . . . ∪ P (j − 1)] ∩ P (j)

for j ≥ 2. Then the ordering P is said to be

perfect if there exists ij < j such that

SP (j) ⊂ P (ij).

This is a deep notion : a connected graph

is decomposable if and only if a perfect orde-

ring of the cliques exists. Furthermore if G is

decomposable and if P is perfect then SP (j)

is a minimal separator.
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Let us fix a perfect ordering P of the set C
of the cliques. For a fixed minimal separator

S consider the set of cliques J(P, S) =

{C ∈ C ; ∃j ≥ 2 such that P (j) = C et SP (j) = S}.

An important result is that if P is a perfect

ordering and if for all S ∈ S different from

SP (2) one has∑
C∈J(P,S)

(α(C)− β(S)) = 0

( we denote by AP this set of (α, β)’s) then by

a long calculation one sees that there exists a

number Γ(α, β) with the following eigenvalue

property : for all y ∈ PG∫
QG

e− tr xyH(α, β;x)µG(dx) = Γ(α, β)H(α, β;π(y−1)).

(L.-Massam, Ann. Statist. 2007).
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A reformulation is∫
QG

e− tr xψ(x1)H(α, β;x)µG(dx) = Γ(α, β)H(α, β;x1)

namely the functions x 7→ H(α, β;x) are ei-

genfunctions of the operator f 7→ K(f) on

functions on QG defined by

K(f)(x1) =
∫
QG

e− tr xψ(x1)f(x)µG(dx).
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This leads to the definition of the Wishart

distributions on QG by

1

Γ(α, β)H(α, β;π(y−1))
e− tr (xy)H(α, β;x)µG(dx)

They are therefore indexed by the shape pa-

rameters (α, β) and by the scale parameter

y ∈ PG.

There is an other family of similar formulas

where the roles of PG and QG are exchanged

that I have no time to describe.
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Homogeneous graphs and the graph A4. I

have to mention that if G is homogeneous,

that is if PG is an homogeneous cone (This

happens if and only if G does not contains

the chain

A4 : • − • − • − •

as an induced graph), the above formulas

hold for a wider range of parameters α and

β than the union of AP where P runs all the

perfect orderings. Thus the simplest non ho-

mogeneous graph is G = A4 = •1−•2−•3−•4
with cliques and separators

C1 = {1,2}, C2 = {2,3}, C3 = {3,4},

S2 = {2}, S3 = {3}.

An element of QG has the form

x =


x1 x12
x21 x2 x23

x32 x3 x34
x43 x4


for x ∈ QG, with xij = xji,
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Let αi = α(Ci), i = 1,2,3 βi = β(Si), i = 2,3.

Define D =

{(α, β) | αi >
1

2
, i = 1,2,3, α1+α2 > β2, α2+α3 > β3}.

Then the following integral (a 7-uple inte-

gral !) converges for all σ ∈ QA4
if and only

if (α, β) is in D. Under these conditions, it is

equal to∫
QG

e−〈x,ψ(σ)〉HG(α, β;x)µG(dx)

=
Γ(α1 − 1

2)Γ(α2 − 1
2)Γ(α3 − 1

2)

Γ(α2)
×Γ(α1 + α2 − β2)Γ(α2 + α3 − β3)

×π
3
2σ

α1
1·2σ

α1+α2−β2
2·3 σ

α2+α3−β3
3·2 σ

α3
4·3

×2F1(α1 + α2 − β2, α2 + α3 − β3, α2,
σ2
23

σ2σ3
)

where 2F1 denotes the hypergeometric func-

tion.

NB σi.j means σi − σijσ
−1
j σji, thus line 3 is a

function of type H(α, β;σ).
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The two lessons of the example

A4 : •1− •2− •3− •4

1. The integral has the form CH(α, β;σ) if

and only if the hypergeometric function

degenerates (we mean when c = a or b

for 2F1(a, b; c;x). Therefore (α, β) satisfies

the eigenvalue property if and only if it is

in the union of the AP ’s for the 4 perfect

orderings P of A4.

2. The 4 perfect orderings are

P1 = C1C2C3, P2 = C2C1C3,

P3 = C3C2C1, P4 = C2C3C1

but

AP1
= AP2

= {α2 = β2} ∩ D

AP3
= AP4

= {α3 = β3} ∩ D

Why ? As we are going to see, this is

because P1 and P2 share the same initial

minimal separator, as well as P4 and P3.13



What one needs to review about decompo-

sable graphs

1. Junction trees.

2. Minimal separators

3. The two definitions of the multiplicity of

a minimal separator.
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Junction trees The cliques of a graph are its

maximal complete subsets. A junction tree

has the set of cliques as set of vertices and

is such that if the clique C′′ is on the unique

path from C to C′ then C′′ ⊃ C ∩ C′. For

instance

•1− •2− •3

is a junction tree for the decomposable graph

•a
uuuuuuuuu

•m
GGGGGGGGG •u

wwwwwwwww

•b

wwwwwwww

•v •c
where the three cliques are 1 = (amu), 2 =

(muvc) and 3 = (bmv). A connected graph is

decomposable if and only if a junction tree

exists (a neat proof of this is given by Blair

and Peyton in 1991)

15



Minimal separators If a and b are not neigh-

bors S ⊂ V is a separator of a and b if any

path from a to b hits S

•a
uuuuuuuuu

•m
GGGGGGGGG •u

wwwwwwwww

•b

wwwwwwww

•v •c
For instance muvc is a separator of a and b.

If nothing can be taken out, S is a minimal

separator of a and b. Finally S is minimal se-

parator by itself if there exist non adjacent a

and b such that S is a minimal separator of a

and b. There are not so many of them, strictly

less that the number of cliques anyway. They

are mu and mv in the example. A connec-

ted graph is decomposable if and only if all

the minimal separators are complete (Dirac

1961).
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Topological multiplicity of a minimal separa-

tor Let S be a minimal separator of a decom-

posable graph (V, E). Let {V1, . . . , Vp} be the

connected components of V \ S (of course

p ≥ 2). Let q be the number of j = 1, . . . , p

such that S is NOT a clique of S ∪ Vj. The

number ν(S) = q− 1 is called the topological

multiplicity of S.

Multiplicity of a minimal separator from a

perfect ordering If P is a perfect ordering

and if S is a minimal separator, denote by

νP (S) the number of j = 2, . . . , k such that

S = SP (j) ; recall

SP (j) = [P (1) ∪ P (2) ∪ . . . ∪ P (j − 1)] ∩ P (j).

(The topological multiplicity is introduced by

Lauritzen, Speed and Vivayan in 1984). Ques-

tion : one observes that in all cases the two

definitions of multiplicity coincide. Why ? Ans-

wer later on.
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Example : If I remove the minimal separator

S = 27 to its graph

•3
EE

EE
EE

EE
•4

yy
yy

yy
yy

•1 •2
EE

EE
EE

EE

EE
EE

EE
EE

•7
yy

yy
yy

yy

•5 •6
four connected components are obtained :

•3 •4

•1

•5 •6
If I add S to each of them, thus for com-

ponent 1 I obtain the graph

•1 •2 •7

for which S = 27 is a clique. This is not the

case for the three other connected compo-

nents 3, 4 et 56. Therefore q = 3, the topo-

logical multiplicity of 27 is 2.

18



•3
EE

EE
EE

EE
•4

yy
yy

yy
yy

•1 •2
EE

EE
EE

EE

EE
EE

EE
EE

•7
yy

yy
yy

yy

•5 •6
Similarly since the cliques are C1 = 12, C2 =

237, C3 = 247, C4 = 2567 one can see

that P = C1C2C3C4 is perfect that SP (3) =

SP (4) = 27 and that νP (27) = 2 = ν(P ).

Question :

Why do we have always νP (S) = ν(S)?
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Tiling of a junction tree by the minimal sepa-

rators If (H, E(H)) is a tree (undirected) with

vertex set H and edge set E(H) a tiling of H

is a family T of subtrees

T = {T1, . . . , Tp}

of H such that if E(Ti) is the edge set of Ti
then

{E(T1), . . . , E(Tq)}

is a partition of E(H). This implies

T1 ∪ . . . ∪ Tq = H

although (T1, . . . , Tp) is not a partition of the

set H.
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Example

•g •e •c

•h •f •d •b •a
the tiles of the tiling can be chosen as

•g

•h •f

•e

•f •d •b

•c

•b •b •a
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Theorem 1.

Let G = (V, E) be a decomposable graph and

let (C, E(C)) be a junction tree of G. Let S be

the family of minimal separators of G. There

exists a unique tiling T of the tree (C, E(C))
by subtrees and a bijection S 7→ TS from S
towards T with the following property : for all

S ∈ S the edges of TS are the edges {C,C′}
such that S = C ∩ C′.

Under these circumstances the number of edges

of TS is the topological multiplicity of S. Fur-

thermore if C and C′ are two distinct cliques

consider the unique path (C = C0, C1, . . . , Cq =

C′) from C to C′. Let Si ∈ S such that {Ci−1, Ci}
is in TSi. Then

C ∩ C′ = ∩qi=1Si.

In particular C ∩C′ = S if C and C′ are in TS.

22



Consider again the example :

•3
EE

EE
EE

EE
•4

yy
yy

yy
yy

•1 •2
EE

EE
EE

EE

EE
EE

EE
EE

•7
yy

yy
yy

yy

•5 •6
There are 4 cliques A = {1,2}, B = {2,3,7},
C = {2,4,7}, D = {2,5,6,7} and two minimal

separators U = {2}, V = {2,7}. The ordering

ABCD of the cliques is perfect with S2 = U et

S3 = S4 = V. Thus V has multiplicity 2 and U

has multiplicity 1. Consider the junction tree

C

A B D

Then TU = AB et TV = BCD.
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Junction trees and perfect orderings of cliques.

Recall that saying that P is a perfect ordering

of the set C of the k cliques of a decompo-

sable graph is to say that there exists ij < j

such that SP (j) ⊂ P (ij). There exist in ge-

neral several possible ij’s. Actually we fix one

such ij for each j and we create the graph ha-

ving C as vertex set with having the k−1 edges

{P (ij), P (j)}. A beautiful result of Beeri, Fa-

gin, Maier and Yannakakis (1983) claims that

this graph is a junction tree and conversely

that any junction tree can be constructed

from a perfect ordering and from a choice

of the j 7→ ij. Let us say that a junction tree

is adapted to the perfect ordering P if there

exists a choice j 7→ ij giving the tree.
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Tiling by minimal separators and perfect or-

derings of the cliques. Let P be a perfect

ordering of the set C of the k cliques of a de-

composable graph Consider now a junction

tree adapted to P and let T be the tiling of

this tree by the minimal separators. We trans-

form this undirected tree into a rooted tree

by taking P (1) as a root. This transforms C
into a partially ordered set : C � C′ if the

unique path from P (1) to C′ passes through

C.
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Let S be in the set S of the minimal sepa-

rators. Recall that we have considered before

the set of cliques J(P, S) =

{C ∈ C ; ∃j ≥ 2 such that P (j) = C et SP (j) = S}.

Just remark that νP (S) = |J(P, S)|. Now for

all S ∈ S the subtree TS has a minimal point

M(S) for this partial order. Here is now a use-

ful result ruling out the old contest between

multiplicities (recall that the number of ver-

tices of a tree is the number of edges plus

one ) :
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Theorem 2.

J(P, S) = TS \ {M(S)}. In particular νP (S) is

the topological multiplicity |TS| − 1 of S.
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Actually J(P, S) depends on S and on SP (2)

only :

Theorem 3. Let P and P ′ two perfect orde-

rings such that P (1) ∩ P (2) = P ′(1) ∩ P ′(2),

that is to say SP (2) = SP ′(2) (denoted S2).

Then J(P, S) = J(P ′, S) if S 6= S2 and

J(P, S2) ∪ {P (1)} = J(P ′, S2) ∪ {P ′(1)}.
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Conclusion : Consequences for the Wishart

distributions on decomposable graphs.

Recall that given a perfect ordering P , the

set AP of acceptable shape parameters (α, β)

for the Wishart distribution is the set of (α, β)

such that for all minimal separators S we have∑
C∈J(P,S)

(α(C)− β(S)) = 0.

Thus this crucial set AP depends entirely on

the family of subsets of cliques

FP = {J(P, S); S ∈ S}.

This tiling process has shown that actually

the family FP -and therefore the set AP of

shape parameters - depends only on the first

minimal separator SP (2) of the perfect orde-

ring P.
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