The tiling by the minimal separators of a junction tree and applications to graphical models
 Durham, 2008

*G. Letac, Université Paul Sabatier, Toulouse. Joint work with H. Massam

Motivation : the Wishart distributions on decomposable graphs.

We denote by \mathcal{S}_{n} the space of symmetric real matrices of order n and by $P_{n} \subset \mathcal{S}_{n}$ the cone of positive definite matrices. Let $G=(V, \mathcal{E})$ be a decomposable graph with $V=\{1, \ldots, n\}$. The subspace $Z S_{G} \subset \mathcal{S}_{n}$ is the space of symmetric matrices ($s_{i j}$) with zeros prescribed by G, that means $s_{i j}=0$ when $\{i, j\} \notin \mathcal{E}$. We denote

$$
P_{G}=Z S_{G} \cap \mathcal{P}_{n} .
$$

A space isomorphic to $Z S_{G}$ is the space $I S_{G}$ of symmetric incomplete matrices which are actually real functions on the union of the set V and the set \mathcal{E} of edges.

We denote by π the natural projection of \mathcal{S}_{n} on $I S_{G}$ and denote $Q_{G}=\pi\left(P_{G}^{-1}\right)$. Three equivalent properties

1. $Q_{G}=\pi\left(P_{G}^{-1}\right)$ (definition)
2. Q_{G} is the open convex cone which is the dual of the cone P_{G}.
3. the restriction x_{C} of $x \in Q_{G}$ to any clique C is positive definite (Hélène's definition).

Example: If

$$
G=\bullet 1-\bullet 2-\bullet 3
$$

the cone P_{G} is the set of positive definite matrices of the form

$$
\left[\begin{array}{ccc}
y_{1} & y_{12} & 0 \\
y_{12} & y_{2} & y_{23} \\
0 & y_{32} & y_{3}
\end{array}\right]
$$

The cone Q_{G} is the set of incomplete matrices of the form

$$
\left[\begin{array}{ccc}
x_{1} & x_{12} & \\
x_{12} & x_{2} & x_{23} \\
& x_{32} & x_{3}
\end{array}\right]
$$

such that the two submatrices associated to the two cliques

$$
\left[\begin{array}{cc}
x_{1} & x_{12} \\
x_{12} & x_{2}
\end{array}\right], \quad\left[\begin{array}{cc}
x_{2} & x_{23} \\
x_{32} & x_{3}
\end{array}\right]
$$

are positive definite.

The bijection between P_{G} and Q_{G}. Let G decomposable, let \mathcal{C} and \mathcal{S} be the families of cliques and minimal separators. If $x \in Q_{G}$ define the Lauritzen function:

$$
y=\psi(x)=\sum_{C \in \mathcal{C}}\left[x_{C}^{-1}\right]_{0}-\sum_{S \in \mathcal{S}} \nu(S)\left[x_{S}^{-1}\right]_{0}
$$

where $[a]_{0}$ means 'extension by zeros' of a principal submatrix a of \mathcal{S}_{n} and where $\nu(S)$ is a certain positive integer called multiplicity of S.

Theorem 1. The map

$$
x \mapsto y=\psi(x)
$$

is a diffeomorphism from Q_{G} onto P_{G}. Its inverse $y \mapsto x$ from P_{G} onto Q_{G} is $x=\pi\left(y^{-1}\right)$.

Let us fix $\alpha: \mathcal{C} \rightarrow \mathbb{R}$ and $\beta: \mathcal{S} \rightarrow \mathbb{R}$ and let us introduce the function $x \mapsto H(\alpha, \beta ; x)$ on Q_{G} by

$$
H(\alpha, \beta ; x)=\frac{\prod_{C \in \mathcal{C}} \operatorname{det}\left(x_{C}\right)^{\alpha(C)}}{\prod_{S \in \mathcal{S}} \operatorname{det}\left(x_{S}\right)^{\nu(S) \beta(S)}}
$$

Define the measure on Q_{G} by
$\mu_{G}(d x)=H\left(-\frac{1}{2}(|C|+1),-\frac{1}{2}(|S|+1 ; x) \mathbf{1}_{Q_{G}}(x) d x\right.$.

Perfect orderings of the cliques. Let \mathcal{C} be the family of the k cliques of the connected graph (not necessarily decomposable). Consider a bijection $P:\{1, \ldots, k\} \rightarrow \mathcal{C}$ and

$$
S_{P}(j)=[P(1) \cup P(2) \cup \ldots \cup P(j-1)] \cap P(j)
$$

for $j \geq 2$. Then the ordering P is said to be perfect if there exists $i_{j}<j$ such that

$$
S_{P}(j) \subset P\left(i_{j}\right)
$$

This is a deep notion : a connected graph is decomposable if and only if a perfect ordering of the cliques exists. Furthermore if G is decomposable and if P is perfect then $S_{P}(j)$ is a minimal separator.

Let us fix a perfect ordering P of the set \mathcal{C} of the cliques. For a fixed minimal separator S consider the set of cliques $J(P, S)=$
$\left\{C \in \mathcal{C} ; \exists j \geq 2\right.$ such that $P(j)=C$ et $\left.S_{P}(j)=S\right\}$.

An important result is that if P is a perfect ordering and if for all $S \in \mathcal{S}$ different from $S_{P}(2)$ one has

$$
\sum_{C \in J(P, S)}(\alpha(C)-\beta(S))=0
$$

(we denote by \mathcal{A}_{P} this set of (α, β) 's) then by a long calculation one sees that there exists a number $\Gamma(\alpha, \beta)$ with the following eigenvalue property : for all $y \in P_{G}$
$\int_{Q_{G}} e^{-\operatorname{tr} x y} H(\alpha, \beta ; x) \mu_{G}(d x)=\Gamma(\alpha, \beta) H\left(\alpha, \beta ; \pi\left(y^{-1}\right)\right)$.
(L.-Massam, Ann. Statist. 2007).

A reformulation is
$\int_{Q_{G}} e^{-\operatorname{tr} x \psi\left(x_{1}\right)} H(\alpha, \beta ; x) \mu_{G}(d x)=\Gamma(\alpha, \beta) H\left(\alpha, \beta ; x_{1}\right)$
namely the functions $x \mapsto H(\alpha, \beta ; x)$ are eigenfunctions of the operator $f \mapsto K(f)$ on functions on Q_{G} defined by

$$
K(f)\left(x_{1}\right)=\int_{Q_{G}} e^{-\operatorname{tr} x \psi\left(x_{1}\right)} f(x) \mu_{G}(d x) .
$$

This leads to the definition of the Wishart distributions on Q_{G} by
$\frac{1}{\Gamma(\alpha, \beta) H\left(\alpha, \beta ; \pi\left(y^{-1}\right)\right)} e^{-\operatorname{tr}(x y)} H(\alpha, \beta ; x) \mu_{G}(d x)$

They are therefore indexed by the shape parameters (α, β) and by the scale parameter $y \in P_{G}$.

There is an other family of similar formulas where the roles of P_{G} and Q_{G} are exchanged that I have no time to describe.

Homogeneous graphs and the graph A_{4}. I have to mention that if G is homogeneous, that is if P_{G} is an homogeneous cone (This happens if and only if G does not contains the chain

$$
A_{4}: \bullet-\bullet-\bullet-\bullet
$$

as an induced graph), the above formulas hold for a wider range of parameters α and β than the union of \mathcal{A}_{P} where P runs all the perfect orderings. Thus the simplest non homogeneous graph is $G=A_{4}=\bullet 1-\bullet 2-\bullet 3-\bullet 4$ with cliques and separators

$$
\begin{gathered}
C_{1}=\{1,2\}, C_{2}=\{2,3\}, C_{3}=\{3,4\}, \\
S_{2}=\{2\}, S_{3}=\{3\}
\end{gathered}
$$

An element of Q_{G} has the form

$$
x=\left[\begin{array}{cccc}
x_{1} & x_{12} & & \\
x_{21} & x_{2} & x_{23} & \\
& x_{32} & x_{3} & x_{34} \\
& & x_{43} & x_{4}
\end{array}\right]
$$

for $x \in Q_{G}$, with $x_{i j}=x_{j i}$,

Let $\alpha_{i}=\alpha\left(C_{i}\right), i=1,2,3 \quad \beta_{i}=\beta\left(S_{i}\right), i=2,3$.
Define $\mathcal{D}=$
$\left\{(\alpha, \beta) \left\lvert\, \alpha_{i}>\frac{1}{2}\right., i=1,2,3, \alpha_{1}+\alpha_{2}>\beta_{2}, \alpha_{2}+\alpha_{3}>\beta_{3}\right\}$.
Then the following integral (a 7-uple integral!) converges for all $\sigma \in Q_{A_{4}}$ if and only if (α, β) is in \mathcal{D}. Under these conditions, it is equal to

$$
\begin{aligned}
& \int_{Q_{G}} e^{-\langle x, \psi(\sigma)\rangle} H_{G}(\alpha, \beta ; x) \mu_{G}(d x) \\
= & \frac{\Gamma\left(\alpha_{1}-\frac{1}{2}\right) \Gamma\left(\alpha_{2}-\frac{1}{2}\right) \Gamma\left(\alpha_{3}-\frac{1}{2}\right)}{\Gamma\left(\alpha_{2}\right)} \\
& \times \Gamma\left(\alpha_{1}+\alpha_{2}-\beta_{2}\right) \Gamma\left(\alpha_{2}+\alpha_{3}-\beta_{3}\right) \\
& \times \pi^{\frac{3}{2}} \sigma_{1 \cdot 2}^{\alpha_{1}} \sigma_{2 \cdot 3}^{\alpha_{1}+\alpha_{2}-\beta_{2}} \sigma_{3 \cdot 2}^{\alpha_{2}+\alpha_{3}-\beta_{3}} \sigma_{4 \cdot 3}^{\alpha_{3}} \\
& \times{ }_{2} F_{1}\left(\alpha_{1}+\alpha_{2}-\beta_{2}, \alpha_{2}+\alpha_{3}-\beta_{3}, \alpha_{2}, \frac{\sigma_{23}^{2}}{\sigma_{2} \sigma_{3}}\right)
\end{aligned}
$$

where ${ }_{2} F_{1}$ denotes the hypergeometric function.

NB $\sigma_{i . j}$ means $\sigma_{i}-\sigma_{i j} \sigma_{j}^{-1} \sigma_{j i}$, thus line 3 is a function of type $H(\alpha, \beta ; \sigma)$.

The two lessons of the example

$$
A_{4}: \bullet 1-\bullet 2-\bullet 3-\bullet 4
$$

1. The integral has the form $C H(\alpha, \beta ; \sigma)$ if and only if the hypergeometric function degenerates (we mean when $c=a$ or b for ${ }_{2} F_{1}(a, b ; c ; x)$. Therefore (α, β) satisfies the eigenvalue property if and only if it is in the union of the \mathcal{A}_{P} 's for the 4 perfect orderings P of A_{4}.
2. The 4 perfect orderings are

$$
\begin{aligned}
P_{1} & =C_{1} C_{2} C_{3}, \quad P_{2}=C_{2} C_{1} C_{3} \\
P_{3} & =C_{3} C_{2} C_{1}, \quad P_{4}=C_{2} C_{3} C_{1}
\end{aligned}
$$

but

$$
\begin{aligned}
& \mathcal{A}_{P_{1}}=\mathcal{A}_{P_{2}}=\left\{\alpha_{2}=\beta_{2}\right\} \cap \mathcal{D} \\
& \mathcal{A}_{P_{3}}=\mathcal{A}_{P_{4}}=\left\{\alpha_{3}=\beta_{3}\right\} \cap \mathcal{D}
\end{aligned}
$$

Why? As we are going to see, this is because P_{1} and P_{2} share the same initial minimal separator, as well as P_{4} and ${ }_{13} P_{3}$.

What one needs to review about decomposable graphs

1. Junction trees.
2. Minimal separators
3. The two definitions of the multiplicity of a minimal separator.

Junction trees The cliques of a graph are its maximal complete subsets. A junction tree has the set of cliques as set of vertices and is such that if the clique $C^{\prime \prime}$ is on the unique path from C to C^{\prime} then $C^{\prime \prime} \supset C \cap C^{\prime}$. For instance

$$
\bullet 1-\bullet 2-\bullet 3
$$

is a junction tree for the decomposable graph

where the three cliques are $1=(a m u), 2=$ ($m u v c$) and $3=(b m v)$. A connected graph is decomposable if and only if a junction tree exists (a neat proof of this is given by Blair and Peyton in 1991)

Minimal separators If a and b are not neighbors $S \subset V$ is a separator of a and b if any path from a to b hits S

For instance muvc is a separator of a and b. If nothing can be taken out, S is a minimal separator of a and b. Finally S is minimal separator by itself if there exist non adjacent a and b such that S is a minimal separator of a and b. There are not so many of them, strictly less that the number of cliques anyway. They are $m u$ and $m v$ in the example. A connected graph is decomposable if and only if all the minimal separators are complete (Dirac 1961).

Topological multiplicity of a minimal separator Let S be a minimal separator of a decomposable graph (V, \mathcal{E}). Let $\left\{V_{1}, \ldots, V_{p}\right\}$ be the connected components of $V \backslash S$ (of course $p \geq 2$). Let q be the number of $j=1, \ldots, p$ such that S is NOT a clique of $S \cup V_{j}$. The number $\nu(S)=q-1$ is called the topological multiplicity of S.

Multiplicity of a minimal separator from a perfect ordering If P is a perfect ordering and if S is a minimal separator, denote by $\nu_{P}(S)$ the number of $j=2, \ldots, k$ such that $S=S_{P}(j)$; recall
$S_{P}(j)=[P(1) \cup P(2) \cup \ldots \cup P(j-1)] \cap P(j)$.
(The topological multiplicity is introduced by Lauritzen, Speed and Vivayan in 1984). Question : one observes that in all cases the two definitions of multiplicity coincide. Why? Answer later on.

Example : If I remove the minimal separator $S=27$ to its graph

four connected components are obtained :

$$
\bullet 3 \quad 4
$$

$\bullet 1$

$$
\bullet 5-\bullet 6
$$

If I add S to each of them, thus for component 1 I obtain the graph

$$
\bullet 1-2-\bullet 7
$$

for which $S=27$ is a clique. This is not the case for the three other connected components 3, 4 et 56. Therefore $q=3$, the topological multiplicity of 27 is 2 .

Similarly since the cliques are $C_{1}=12, C_{2}=$ 237, $C_{3}=247, C_{4}=2567$ one can see that $P=C_{1} C_{2} C_{3} C_{4}$ is perfect that $S_{P}(3)=$ $S_{P}(4)=27$ and that $\nu_{P}(27)=2=\nu(P)$.

Question:

Why do we have always $\nu_{P}(S)=\nu(S)$?

Tiling of a junction tree by the minimal separators If $(H, \mathcal{E}(H))$ is a tree (undirected) with vertex set H and edge set $\mathcal{E}(H)$ a tiling of H is a family \mathcal{T} of subtrees

$$
\mathcal{T}=\left\{T_{1}, \ldots, T_{p}\right\}
$$

of H such that if $\mathcal{E}\left(T_{i}\right)$ is the edge set of T_{i} then

$$
\left\{\mathcal{E}\left(T_{1}\right), \ldots, \mathcal{E}\left(T_{q}\right)\right\}
$$

is a partition of $\mathcal{E}(H)$. This implies

$$
T_{1} \cup \ldots \cup T_{q}=H
$$

although $\left(T_{1}, \ldots, T_{p}\right)$ is not a partition of the set H.

Example

the tiles of the tiling can be chosen as

Theorem 1.

Let $G=(V, \mathcal{E})$ be a decomposable graph and let $(\mathcal{C}, \mathcal{E}(\mathcal{C}))$ be a junction tree of G. Let \mathcal{S} be the family of minimal separators of G. There exists a unique tiling \mathcal{T} of the tree $(\mathcal{C}, \mathcal{E}(\mathcal{C}))$ by subtrees and a bijection $S \mapsto T_{S}$ from \mathcal{S} towards \mathcal{T} with the following property : for all $S \in \mathcal{S}$ the edges of T_{S} are the edges $\left\{C, C^{\prime}\right\}$ such that $S=C \cap C^{\prime}$.

Under these circumstances the number of edges of T_{S} is the topological multiplicity of S. Furthermore if C and C^{\prime} are two distinct cliques consider the unique path ($C=C_{0}, C_{1}, \ldots, C_{q}=$ C^{\prime}) from C to C^{\prime}. Let $S_{i} \in \mathcal{S}$ such that $\left\{C_{i-1}, C_{i}\right\}$ is in $T_{S_{i}}$. Then

$$
C \cap C^{\prime}=\cap_{i=1}^{q} S_{i}
$$

In particular $C \cap C^{\prime}=S$ if C and C^{\prime} are in T_{S}.

Consider again the example :

There are 4 cliques $A=\{1,2\}, B=\{2,3,7\}$, $C=\{2,4,7\}, D=\{2,5,6,7\}$ and two minimal separators $U=\{2\}, V=\{2,7\}$. The ordering $A B C D$ of the cliques is perfect with $S_{2}=U$ et $S_{3}=S_{4}=V$. Thus V has multiplicity 2 and U has multiplicity 1. Consider the junction tree

Then $T_{U}=A B$ et $T_{V}=B C D$.

Junction trees and perfect orderings of cliques. Recall that saying that P is a perfect ordering of the set \mathcal{C} of the k cliques of a decomposable graph is to say that there exists $i_{j}<j$ such that $S_{P}(j) \subset P\left(i_{j}\right)$. There exist in general several possible i_{j} 's. Actually we fix one such i_{j} for each j and we create the graph having \mathcal{C} as vertex set with having the $k-1$ edges $\left\{P\left(i_{j}\right), P(j)\right\}$. A beautiful result of Beeri, Fagin, Maier and Yannakakis (1983) claims that this graph is a junction tree and conversely that any junction tree can be constructed from a perfect ordering and from a choice of the $j \mapsto i_{j}$. Let us say that a junction tree is adapted to the perfect ordering P if there exists a choice $j \mapsto i_{j}$ giving the tree.

Tiling by minimal separators and perfect orderings of the cliques. Let P be a perfect ordering of the set \mathcal{C} of the k cliques of a decomposable graph Consider now a junction tree adapted to P and let \mathcal{T} be the tiling of this tree by the minimal separators. We transform this undirected tree into a rooted tree by taking $P(1)$ as a root. This transforms \mathcal{C} into a partially ordered set : $C \preceq C^{\prime}$ if the unique path from $P(1)$ to C^{\prime} passes through C.

Let S be in the set \mathcal{S} of the minimal separators. Recall that we have considered before the set of cliques $J(P, S)=$
$\left\{C \in \mathcal{C} ; \exists j \geq 2\right.$ such that $P(j)=C$ et $\left.S_{P}(j)=S\right\}$. Just remark that $\nu_{P}(S)=|J(P, S)|$. Now for all $S \in \mathcal{S}$ the subtree T_{S} has a minimal point $M(S)$ for this partial order. Here is now a useful result ruling out the old contest between multiplicities (recall that the number of vertices of a tree is the number of edges plus one) :

Theorem 2.
$J(P, S)=T_{S} \backslash\{M(S)\}$. In particular $\nu_{P}(S)$ is the topological multiplicity $\left|T_{S}\right|-1$ of S.

Actually $J(P, S)$ depends on S and on $S_{P}(2)$ only :

Theorem 3. Let P and P^{\prime} two perfect orderings such that $P(1) \cap P(2)=P^{\prime}(1) \cap P^{\prime}(2)$, that is to say $S_{P}(2)=S_{P^{\prime}}(2)$ (denoted S_{2}). Then $J(P, S)=J\left(P^{\prime}, S\right)$ if $S \neq S_{2}$ and

$$
J\left(P, S_{2}\right) \cup\{P(1)\}=J\left(P^{\prime}, S_{2}\right) \cup\left\{P^{\prime}(1)\right\}
$$

Conclusion : Consequences for the Wishart distributions on decomposable graphs.

Recall that given a perfect ordering P, the set \mathcal{A}_{P} of acceptable shape parameters (α, β) for the Wishart distribution is the set of (α, β) such that for all minimal separators S we have

$$
\sum_{C \in J(P, S)}(\alpha(C)-\beta(S))=0
$$

Thus this crucial set \mathcal{A}_{P} depends entirely on the family of subsets of cliques

$$
\mathcal{F}_{P}=\{J(P, S) ; S \in \mathcal{S}\} .
$$

This tiling process has shown that actually the family \mathcal{F}_{P}-and therefore the set \mathcal{A}_{P} of shape parameters - depends only on the first minimal separator $S_{P}(2)$ of the perfect ordering P.

