Outline
Basic problem and setup
Conditions for existence
Geometric representation
Adding symmetry
References

Existence of the Maximum Likelihood Estimator in Graphical Gaussian Models

Steffen Lauritzen, University of Oxford

Durham Symposium on Mathematical Aspects of Graphical Models

July 8, 2008

Basic problem and setup

Graphical Gaussian Model Likelihood function Matrix completion

Conditions for existence

The case of a chordal graph The general case

Geometric representation

Fundamental invariances and projective spaces

Adding symmetry

$$X=(X_v,v\in V)\sim \mathcal{N}_V(0,\Sigma)$$
 with Σ regular and $K=\Sigma^{-1}$.
 Graphical Gaussian Model represented by $\mathcal{G}=(V,E),\ K\in\mathcal{S}^+(\mathcal{G}).$ $K\in\mathcal{S}^+(\mathcal{G})$ is set of (symmetric) positive definite matrices with

$$k_{\alpha\beta} = 0$$
 whenever $\alpha \not\sim \beta$.

How many observations are needed to ensure estimability of K for a given graph \mathcal{G} ? Equivalently,

for a given sample size, how complex can G be for K to be estimable?

The log-likelihood function based on a sample of size n is

$$\log L(K) = \frac{n}{2} \log(\det K) - \operatorname{tr}(KW)/2$$
$$= \frac{n}{2} \log(\det K) - \operatorname{tr}\{KW(\mathcal{G})\}/2$$

where W is the Wishart matrix of sums of squares and products of the X's and $W(\mathcal{G})$ the partial matrix $W(\mathcal{G}) = \{W_c, c \in \mathcal{C}\}.$

 $W(\mathcal{G})$ is in the cone of partially positive semidefinite (PPS) matrices (W_c all positive semidefinite), denoted $\mathcal{Q}_{\mathcal{G}}$. The cone of partially positive definite (PPD) matrices is denoted $\mathcal{Q}_{\mathcal{G}}^+$.

If we write the sample as a $|V| \times n$ matrix \mathbf{X} with rows $\mathbf{X}_{v}, v \in V$ and columns $\mathbf{X}^{\nu}, \nu = 1, \dots n$ then $W = \mathbf{X}\mathbf{X}^{\top}$. Hence $W(\mathcal{G})$ is also in $\mathcal{Q}_{\mathcal{G}}^{e}$, the PPS matrices which are also *extendable* to full positive semidefinite matrices (PPSE).

Since the restriction $K \in \mathcal{S}^+(\mathcal{G})$ is *linear* in K, this is the likelihood function of a canonical and linear exponential family with K as the canonical parameter and the partial matrix $W(\mathcal{G})$ as its canonical sufficient statistic.

The exponential family property implies that the MLE of Σ is the unique element with $K = \Sigma^{-1} \in \mathcal{S}^+(\mathcal{G})$ satisfying

$$n\Sigma(G) = W(G)$$

provided such an element exists.

Standard exponential family theory: a solution exists if and only if $W(\mathcal{G})$ is in the interior $\mathcal{Q}_{\mathcal{G}}^{e\circ}$ of the cone $\mathcal{Q}_{\mathcal{G}}^{e}$ of extendable PPS matrices, which are those which are extendable to PPD matrices. If $n \geq |V|$, $\operatorname{rank}(\mathbf{X}) = \operatorname{rank}(W) = |V|$ with probability 1, so W is in $\mathcal{Q}_{\mathcal{G}}^{+}$, implying that $W(\mathcal{G})$ is in $\mathcal{Q}_{\mathcal{G}}^{e\circ}$.

What happens if n << |V|?

The cones of extendable and non-extendable PPD matrices.

Matrix completion (Paulsen et al. 1989) is concerned with the question of equality between $\mathcal{Q}_{\mathcal{G}}^{e}$ and $\mathcal{Q}_{\mathcal{G}}$.

It always holds that

$$\mathcal{Q}_{\mathcal{G}}^{\mathsf{e}\circ}\subseteq\mathcal{Q}_{\mathcal{G}}^{+}.$$

It holds that

$$\mathcal{Q}_{\mathcal{G}}^{e\circ}=\mathcal{Q}_{\mathcal{G}}^{+}$$

if and only if G is chordal.

It holds that

$$\mathcal{Q}_{\mathcal{G}}^{\mathsf{e}} = \mathcal{Q}_{\mathcal{G}}$$

if and only if G is chordal.

All standard and well-known in a number of contexts.

A non-extendable PPD matrix

For the chordless four-cycle, the matrix below is in $\mathcal{Q}_{\mathcal{G}}^+ \setminus \mathcal{Q}_{\mathcal{G}}^{e\circ}$ if $|\rho|$ is sufficiently large $(\rho \geq 1/2)$:

$$\mathcal{K} = \left(egin{array}{cccc} 1 &
ho & * & -
ho \\
ho & 1 &
ho & * \\ * &
ho & 1 &
ho \\ -
ho & * &
ho & 1 \end{array}
ight).$$

If there is a strong positive correlation ρ between the pairs of variables (X_1, X_2) , (X_2, X_3) , and (X_3, X_4) , then X_1 and X_4 cannot possibly be strongly negatively correlated.

Very limited results are available on the non-chordal case other than counterexamples such as above.

The MLE exists if and only if $W(\mathcal{G}) \in \mathcal{Q}_{\mathcal{G}}^{eo}$. When is this the case?

If $\mathcal G$ chordal, we have $\mathcal Q_{\mathcal G}^{\mathrm{eo}}=\mathcal Q_{\mathcal G}^+$ and hence we just have to ensure that $W(\mathcal G)$ is PPD.

Thus, in the chordal case MLE exists with probability one if

$$n \ge \max_{C \in \mathcal{C}(\mathcal{G})} |C|$$

and it does not exist if

$$n < \max_{C \in \mathcal{C}(\mathcal{G})} |C|$$
.

If the MLE exists for a given graph \mathcal{G} , it clearly also exists for any subgraph obtained by removing edges.

So if there is a *chordal cover*, i.e. a graph $\mathcal{G}^* = (V, E^*)$ with $E \subseteq E^*$, and $n \ge \max_{C \in \mathcal{C}(\mathcal{G}^*)} |C|$, the MLE also exists in \mathcal{G} .

The *treewidth* $\tau(\mathcal{G})$ of a graph is one less than the smallest maximal clique in a chordal cover as above, i.e.

$$\tau(\mathcal{G}) = \min_{\mathcal{G}^*: \mathcal{G}^* \text{ chordal cover of } \mathcal{G}} \max_{C \in \mathcal{C}(\mathcal{G}^*)} |C| - 1.$$

Thus the *treewidth of a tree is 1*. A chordal graph $\mathcal G$ has treewidth is $\tau(\mathcal G) = \max_{C \in \mathcal C(\mathcal G)} |C| - 1$.

The treewidth of the $d \times d$ lattice is d.

Rephrasing previous remarks we get for a general case that

If $n > \tau(\mathcal{G})$, the MLE exists with probability 1.

Finding the treewidth of a graph is NP-complete, but deciding for fixed n whether $n > \tau(\mathcal{G})$ is linear in |V|.

And since $\mathcal{Q}_{\mathcal{G}}^{e\circ}\subseteq\mathcal{Q}_{\mathcal{G}}^+$, it follows that if $W(\mathcal{G})$ is only PPS, the MLE does not exist, i.e.

If $n < \max_{C \in \mathcal{C}(G)} |C|$, the MLE does not exist.

What happens in the gap, i.e. when $\max_{C \in \mathcal{C}(\mathcal{G})} |C| \leq n \leq \tau(\mathcal{G})$? Only results that I know of are given in Buhl (1993).

Example: the four-cycle has treewidth 2, so if n > 2, the MLE exists. If n = 1 it does not exist. Buhl (1993) shows that if n = 2, the MLE exists with a probability which is strictly between 0 and 1.

The above result is easily modified to the *p*-cycle which has the same treewidth, and can easily be modified to yield full clarity for wheels and, say, the octahedron (Buhl 1993).

The 3×3 lattice has treewidth 3, so MLE exists for n > 3 and since the clique size is 2, so n = 1 is not enough. But what happens for n = 2 and n = 3? Still open.

We again write the sample as a $|V| \times n$ matrix **X** so $W = \mathbf{XX}^{\top}$.

The problem of existence/extendability is invariant under rescaling of each X-variable with a constant, i.e. we can pre- and post-multiply W with a diagonal matrix A:

$$X \rightarrow AX$$
, or $W \rightarrow AWA$, where A is diagonal,

expressed both in X-space and in W-space, implying that the problem naturally lives in \mathbb{RP}^{n-1} , the n-1-dimensional real projective space.

Similarly, in X-space, we can post-multiply \mathbf{X} with an orthogonal matrix U since

$$\mathbf{X} \to \mathbf{X} U$$
, or $W \to \mathbf{X} U U^{\top} \mathbf{X}^{\top} = W$.

The four-cycle

The geometric representation of this particular example for n=2 is illustrative. Then **X** is a 4×2 matrix

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{22} \\ x_{21} & x_{22} \\ x_{21} & x_{22} \\ x_{21} & x_{22} \end{pmatrix}.$$

Each row of X generates a line in \mathbb{R}^2 through the origin, i.e. a point in \mathbb{RP}^1 . The question of existence is determined be the relative position of these lines.

Observations are angles $\cos(\theta_{uv}) = x_u x_v / \sqrt{x_u^2 + x_v^2}$ between neighbours $u \sim v$ in graph.

MLE exists in situation to the left, but it does not exist in the situation to the right Buhl (1993).

3×3 lattice for n = 3

n=4 observations is sufficient. What is the condition on the angles between graph neighbours for the existence of 9 vectors in higher dimension with same angles?

Less observations are needed when symmetry is imposed. How much does this help?

n=1 is sufficient for existence of the MLE! In Højsgaard and Lauritzen (2008) but also classic as it is a circular autoregression of order 1.

$$\hat{\sigma}_{11} = \hat{\sigma}_{22} = \hat{\sigma}_{33} = \hat{\sigma}_{44} = (x_1^2 + x_2^2 + x_3^2 + x_4^2)/4,$$

$$\hat{\sigma}_{12} = \hat{\sigma}_{23} = \hat{\sigma}_{34} = \hat{\sigma}_{41} = (x_1x_2 + x_2x_3 + x_3x_4 + x_4x_1)/4,$$

$$\hat{\sigma}_{13} = \hat{\sigma}_{24} = (\sqrt{1 + 8r^2} - 1)/2,$$
where $r = (x_1x_2 + x_2y_3 + x_3x_4 + x_4x_1)/(x_1^2 + x_2^2 + x_3^2 + x_4^2).$

Outline
Basic problem and setup
Conditions for existence
Geometric representation
Adding symmetry
References

Both RCON and RCOP but not generated by permutation symmetry: Not clear what the condition is for existence.

Frets' heads

Symmetry between the two sons. *RCOP model* as determined by permutation of variable labels and illustrated in figure below

n = 1 is sufficient for existence of the MLE!

$$\mathbf{X} = \left(egin{array}{ccc} l_1 & l_2 \\ l_2 & l_1 \\ b_2 & b_1 \\ b_1 & b_2 \end{array} \right)$$

Use the group and the geometry!

Interchanging 1 and 3

n = 1 is sufficient for existence of the MLE!

Use the group and the geometry!

Simultaneously interchanging 1 with 3 and 2 with 4

n = 1 is sufficient for existence of the MLE!

Use the group and the geometry!

- Buhl, S. L.: 1993, On the existence of maximum likelihood estimators for graphical Gaussian models, *Scandinavian Journal of Statistics* **20**, 263–270.
- Højsgaard, S. and Lauritzen, S. L.: 2008, Graphical Gaussian models with edge and vertex symmetries, *Journal of the Royal Statistical Society, Series B* **68**, in press.
- Paulsen, V. I., Power, S. C. and Smith, R. R.: 1989, Schur products and matrix completions, *Journal of Functional Analysis* **85**, 151–178.