RCOX models: Graphical Gaussian models with edge and vertex symmetries

Søren Højsgaard, University of Aarhus, Denmark
J oint work with
Steffen Lauritzen, University of Oxford

and

Sren Hjsgaard, Sören Höjsgaard, Særen Hæjsgaard and S???ren H???jsgaard

Take-home message and Outline

- New types of graphical Gaussian models
- With colours; as in the logo
- Attribute specific meanings to the colours
- An R-package (gRc) for inference in these models
- Motivation
- RCO'X' models: RCON, RCOR, RCOP
- Estimation algorithms
- Software

I dea...

- Apply graphical (Gaussian) models to large matrices, e.g. in gene expression
- Problem: d >>n, many genes few replicates

Graphical model for $Y \sim \mathbf{N}_{\mathbf{d}}(\mathbf{0}, \Sigma)$

- When d >n, MLE of Σ does not exist (in saturated model)
- I mpose restrictions on $K=\Sigma^{-1}$ to achieve more parsimonious model;
- In addition to conditional independence, restrict parameters to being identical

Concentration and derived quantities

- Model for $y \sim N_{d}(0, \Sigma), K=\left(k^{i j}\right)=\Sigma^{-1}$.
- The partial (conditional) covariance :

$$
\operatorname{cov}\left(y_{i}, y_{j} \mid r e s t\right)=\frac{-k^{i j}}{\operatorname{det} K^{i j}} \text { where } K^{i j}=\left[\begin{array}{cc}
k^{i i} & k^{i j} \\
k^{i j} & k^{j j}
\end{array}\right]
$$

- The partial (conditional) correlation:

$$
\operatorname{cor}\left(y_{i}, y_{j} \mid r e s t\right)=\rho^{i j}=\frac{-k^{i j}}{\sqrt{k^{i i} k^{j j}}}
$$

- Conditional independence: $y_{i} \Perp y_{j} \mid$ rest iff $k^{i j}=0$

Example: Mathematics marks

- Mathmark data (Mardia, Kent, Bibby): 88 students marks on (a) Igebra, a(n)alysis, (m)echanics, (v)ectors and (s)tatistics
- Stepwise backward selection gives butterfly model

- Convention: Black and white are neutral colours
- corresponding parameters are unrestricted.

Concentrations for mathmarks

Concentrations (×1000):

	mechanics	vectors	algebra	analysis	statistics
mechanics	5.24	-2.44	-2.74	0.01	-0.14
vectors	-2.44	10.43	-4.71	-0.79	-0.17
algebra	-2.74	-4.71	26.95	-7.05	-4.70
analysis	0.01	-0.79	-7.05	9.88	-2.02
statistics	-0.14	-0.17	-4.70	-2.02	6.45

- Some concentrations \approx 0
- Some concentrations \approx identical

Partial correlations for mathmarks

Partial correlations:

	mechanics	vectors	algebra	analysis	statistics
(m)echanics	1.00	-0.30	-0.20	0.00	0.00
(v)ectors	-0.30	1.00	-0.30	-0.10	0.00
(a)lgebra	-0.20	-0.30	1.00	-0.40	-0.40
a(n)alysis	0.00	-0.10	-0.40	1.00	-0.30
(s)tatistics	0.00	0.00	-0.40	-0.30	1.00
Partial variances	190.67	95.91	37.10	101.18	155.04

- Some partial correlations \approx identical

RCON (Restricted CONcentration) models

Model: $\mathbf{Y} \sim \mathbf{N}_{\mathrm{d}} \mathbf{(0 , \Sigma)}$

$$
K=\Sigma^{-1}=\left[\begin{array}{cccc}
k^{11} & k^{12} & k^{13} & 0 \\
k^{12} & k^{22} & 0 & k^{24} \\
k^{13} & 0 & k^{33} & k^{34} \\
0 & k^{24} & k^{34} & k^{44}
\end{array}\right]
$$

Markov properties as for graphical Gaussian model

- Entries of K with same colour restricted to being identical $\rightarrow 4$ rather than 8 parameters.

Implied restrictions (I): Equal contributions in regression

- Regressing y_{1} on y_{2}, y_{3}, y_{4}

$$
y_{1}=a_{1}-\left(k^{12} / k^{11}\right) y_{2}-\left(k^{13} / k^{11}\right) y_{3}
$$

- so y_{2} and y_{3} contribute equally because $\mathbb{k}^{12}=\mathbb{k}^{13}$

$$
K=\Sigma^{-1}=\left[\begin{array}{cccc}
k^{11} & k^{12} & k^{13} & 0 \\
k^{12} & k^{22} & 0 & k^{24} \\
k^{13} & 0 & k^{33} & k^{34} \\
0 & k^{24} & k^{34} & k^{44}
\end{array}\right]
$$

I mplied restrictions (II): Parallel regressions

- Regressions of y_{2}, y_{3} on y_{1}, \mathbf{y}_{4} are parallel

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{2} \\
y_{3}
\end{array}\right] } & =\left[\begin{array}{l}
a_{2} \\
a_{3}
\end{array}\right]-\left[\begin{array}{cc}
k^{22} & 0 \\
0 & k^{33}
\end{array}\right]^{-1}\left[\begin{array}{ll}
k^{21} & k^{24} \\
k^{31} & k^{34}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{4}
\end{array}\right] \\
& =\left[\begin{array}{l}
a_{2} \\
a_{3}
\end{array}\right]-\left[\begin{array}{ll}
k^{21} / k^{22} & k^{24} / k^{22} \\
k^{31} / k^{33} & k^{34} / k^{33}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{4}
\end{array}\right]
\end{aligned}
$$

- because $k^{12}=k^{13}, k^{24}=k^{34}$ and $k^{22}=k^{33}$

I mplied restrictions (|||): Partial covariances and concentrations

- This RCON model has also identical partial covariances

$$
\operatorname{cov}\left(y_{1}, y_{2} \mid y_{3}, y_{4}\right)=\frac{-k^{12}}{\left|K^{12}\right|}=\frac{-k^{13}}{\left|K^{13}\right|}=\operatorname{cov}\left(y_{1}, y_{3} \mid y_{2}, y_{4}\right)
$$

- - and identical partial correlations

$$
\begin{aligned}
& \operatorname{cor}\left(y_{1}, y_{2} \mid y_{3}, y_{4}\right)=\frac{-k^{12}}{\sqrt{k^{11}} k^{22}}=\frac{-k^{13}}{\sqrt{k^{11} k^{33}}}=\operatorname{cor}\left(y_{1}, y_{3} \mid y_{2}, y_{4}\right) \\
& \mathrm{K}=\Sigma^{-1}=\left[\begin{array}{cccc}
k^{11} & k^{12} & k^{13} & 0 \\
k^{12} & k^{22} & 0 & k^{24} \\
k^{13} & 0 & k^{33} & k^{34} \\
0 & k^{24} & k^{34} & k^{44}
\end{array}\right] \quad \begin{array}{l}
\text { Not } \\
\text { generally } \\
\text { the case!!! }
\end{array}
\end{aligned}
$$

Example - mathematics marks

- Focus on butterfly model
- EdgeColourClass: Edges with same colour
- VertexColourClass: Vertices with same colour
- Note: Black and white are neutral colours; no restrictions
- Successively apply (with LR-test, 5\% level)
- JoinEdgeColourClasses()
- JoinVertexColourClasses()

Mathematics marks

Estimated / observed concentrations ($\times 1000$) are

Concentrations	mechanics	vectors	algebra	analysis	statistics
mechanics	7.58	-3.49	-3.49	0.00	0.00
vectors	-3.49	7.58	-3.49	0.00	0.00
algebra	-3.49	-3.49	20.76	-3.49	-3.49
analysis	0.00	0.00	-3.49	7.58	-3.49
statistics	0.00	0.00	-3.49	-3.49	7.58
mechanics	5.24	-2.44	-2.74	0.01	-0.14
vectors	-2.44	10.43	-4.71	-0.79	-0.17
algebra	-2.74	-4.71	26.95	-7.05	-4.70
analysis	0.01	-0.79	-7.05	9.88	-2.02
statistics	-0.14	-0.17	-4.70	-2.02	6.45

RCOR (Restricted CORrelation) models

- Restricting concentrations not scale-invariant: Identical concentrations of $y \sim N(0, \Sigma)$ not generally preserved for $A y \sim N(0, A \Sigma A)$, where A is diagonal
- Hence RCON models are only of interest in cases where the scale of measurement for different variables are comparable
- Alternatively: Focus on restricted partial correlations

RCOR (restricted correlation) models
Write -K as
$\left[\begin{array}{cccc}\eta^{11} & 0 & 0 & 0 \\ 0 & \eta^{22} & 0 & 0 \\ 0 & 0 & \eta^{33} & 0 \\ 0 & 0 & 0 & \eta^{44}\end{array}\right]\left[\begin{array}{cccc}1 & \rho^{12} & \rho^{13} & 0 \\ \rho^{12} & 1 & 0 & \rho^{24} \\ \rho^{13} & 0 & 1 & \rho^{34} \\ 0 & \rho^{24} & \rho^{34} & 1\end{array}\right]\left[\begin{array}{cccc}\eta^{11} & 0 & 0 & 0 \\ 0 & \eta^{22} & 0 & 0 \\ 0 & 0 & \eta^{33} & 0 \\ 0 & 0 & 0 & \eta^{44}\end{array}\right]$
$=A_{\eta} C_{\rho} A_{\eta}$ where
A_{η} : diagonal with positive entries (inverse partial standard deviations)
C_{ρ} : has 1s on diagonal (partial correlations)

- Entries of $\left(\mathrm{A}_{\mathrm{n}}, \mathrm{C}_{\rho}\right)$ restricted according to colouring
- Scale invariant - if vertices with same colour are rescaled identically

RCOP models ('P’ for permution symmetry)

Fret's head: Length and breadth of head of first and second son:

Complete symmetry between first and second son

- Both RCON and RCOR
- RCOP-model (defined by permutations)
- Studied by Helene Neufeld (poster session)

Symmetry models in nature

Further...

A bigger picture...

Relationships between models

Also linear in Σ

Specification of RCON / RCOR models

- Generators of model
- Edge colour classes: $E C=\{\{1,2\}\{1,3\}\}\{\{2,4\}\{3,4\}\}$
- Vertex colour classes:

VC $=\{1,4\}\{2,3\}$

- (EC,VC) specifies RCON/ RCOR model

RCON Estimation - Sufficient statistics

For EdgeCC $s=\{\{1,2\}\{1,3\}\} \quad$ Let $\mathbf{W} \sim \mathbf{W i s h a r t}(\mathbf{f}, \Sigma)$
$T^{s}=\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
RCON regular exponential family; linear in K:

For vertexCC $s=\{1,4\}$
$T^{s}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
So $\left\{t^{s}=\operatorname{tr}\left(T^{s} \mathbf{W}\right)\right\}$ is a set of sufficient statistics

Equated with expectations $\left\{\mathbf{t}^{s}\right\}=\left\{f \operatorname{tr}\left(T^{s} \Sigma\right)\right\}$

Estimation in RCON models Modified Newton

- Use convergent (!) algorithm of Jensen, J ohansen and Lauritzen (1991):
- Maximize 1/ L (instead of logL) cyclically over one parameter at the time by Newton iteration.
- In exponential families we have
- $\exp (t(y) \theta-\psi(\theta))$
- $\mathrm{I}^{*}=1 / \mathrm{L}=\exp (-\mathrm{t}(\mathrm{y}) \theta+\psi(\theta))$

Modified Newton

- Let $\Delta=E(t(y))-t(y)$.
- Then
- ($\left.I^{*}\right)^{\prime}=\exp (-\mathrm{t}(\mathrm{y}) \theta+\psi(\theta)) \Delta$
- ($\left.I^{*}\right)^{\prime \prime}=\exp (-\mathrm{t}(\mathrm{y}) \theta+\psi(\theta))\left[\operatorname{Var}(\mathrm{t}(\mathrm{y}))+\Delta^{2}\right]$
- Newton step becomes:
" $\theta<-\theta-\left(I^{*}\right)^{\prime} /\left(I^{*}\right) "=\theta-\Delta /\left(\operatorname{Var}(\mathrm{t}(\mathrm{y}))+\Delta^{2}\right)$
- For RCON models
- $E\left(T^{s} W\right)=f \operatorname{tr}\left(T^{s} \Sigma\right)$
- $\operatorname{Var}\left(\mathrm{T}^{\mathrm{s}} \mathrm{W}\right)=\mathrm{f} \operatorname{tr}\left(\mathrm{T}^{s} \Sigma \mathrm{~T}^{\mathrm{s}} \Sigma\right)$

Estimation - RCOR - short version

RCOR model is generally not a linear exponential family
$\log L=f / 2 \log \left|C_{\rho}\right|+f \log \left|A_{\eta}\right|-\operatorname{tr}\left(A_{\eta} C_{\rho} A_{\eta} W\right) / 2$
Linear exponential family for fixed η; likelihood equations quadratic for fixed ρ.

Existence/uniqueness of MLE not clear. But unique maximum in ρ for fixed η and unique maximum in η for fixed ρ.

Suggests alternating algorithm

1. For given η, estimate ρ using modified Newton as for RCON
2. For given ρ, estimate η by solving system of 2 nd degree equations (cyclically)

Larger model: Breast cancer genes

- 58 cases, 150 genes
- 7 VCC, 10 ECC: 17 parameters
- Fitting with gRc: 0.3 sec
- 380 parms
- Fitting with gRc: 1.1 sec
- Model selection is a big issue...

Summing up

- SH +Lauritzen: Graphical Gaussian models with edge and vertex symmetries. (RSSB, To appear)
- SH + Lauritzen (2007). Inference in graphical Gaussian models with edge and vertex symmetries with the gRc package for R (J. Stat. Soft)
- gRc package in R ('c' for colour) on CRAN

