Graphical methods for efficient likelihood inference in Gaussian covariance models

Mathias Drton
Department of Statistics
University of Chicago
(joint work with Thomas Richardson)

July 1, 2008

Outline

(1) Covariance graphs and Gaussian models

- Covariance matrices with zeros
- Likelihood inference in Gaussian models
- Iterative conditional fitting
(2) Graphical constructions for efficient model fitting
- Ancestral graphs
- Markov equivalence of ancestral and covariance graphs
- Simplicial graphs
- Minimally oriented graphs
(3) Conclusion and references

1. Covariance graphs

- Covariance graph $G=(V, E)$ is simple undirected graph (we draw edges as \longleftrightarrow and also speak of a bi-directed graph)
- Associated set of covariance matrices

$$
\mathcal{C}(G)=\left\{\Sigma=\left(\sigma_{v w}\right) \in P D(V): \sigma_{v w}=0 \text { if }(v, w) \notin E\right\}
$$

Example

Graph G:

$$
X_{1} \longleftrightarrow X_{2} \longleftrightarrow X_{3} \longleftrightarrow X_{4}
$$

Associated covariance matrices in $\mathcal{C}(G)$ are tridiagonal:

$$
\Sigma=\left(\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & 0 & 0 \\
\sigma_{12} & \sigma_{22} & \sigma_{23} & 0 \\
0 & \sigma_{23} & \sigma_{33} & \sigma_{34} \\
0 & 0 & \sigma_{34} & \sigma_{44}
\end{array}\right)
$$

ML estimation in Gaussian covariance model

- Gaussian covariance model $\{\mathcal{N}(0, \Sigma): \Sigma \in \mathcal{C}(G)\}$
- Observe n-sample giving rise to a data matrix

$$
X=\left(\begin{array}{ccc}
X_{11} & \ldots & X_{1 n} \\
\vdots & & \vdots \\
X_{V 1} & \ldots & X_{V n}
\end{array}\right)
$$

- Sample covariance matrix

$$
S=\frac{1}{n} X X^{t}
$$

- Compute MLE $\hat{\Sigma}$ by maximizing

$$
\ell(\Sigma)=-\log \operatorname{det} \Sigma-\operatorname{tr}\left(\Sigma^{-1} S\right) \quad \text { subject to } \Sigma \in \mathcal{C}(G) .
$$

- Assume sample size $n \geq V$ s.t. $P(S$ positive definite $)=1$.

Computational algebra

Rational likelihood equations can be solved algebraically for small graphs

Proposition

If $V \leq 4$, then the likelihood equations almost surely have one feasible solution (ML degree 1) except when G is

Case (a): ML degree 5 (all 5 solutions may be feasible) Case (b): ML degree 17.
In both cases (a) and (b) there exist positive definite sample covariance matrices such that MLE $\hat{\Sigma}$ cannot be expressed in radicals.

Iterative conditional fitting

Goal

Compute MLE of joint distribution of $X=\left(X_{v} \mid v \in V\right)$ in the model associated with a covariance graph $G=(V, E)$.

Outline of algorithm

Initialization: Choose feasible joint distribution of X and a vertex $w \in V$. Iterations: Repeat the following steps until convergence

Step 1: Fix marginal distribution of $X_{V \backslash\{w\}}$.
Step 2: Estimate conditional distribution of X_{w} given $X_{V \backslash\{w\}}$ under the constraints implied by the graphical model.
Step 3: Compute estimate of joint distribution of X by multiplying estimated conditional and fixed marginal distribution.
Step 4: Set $w=w+1 \bmod V$.

Iterative conditional fitting for Gaussian models

Algorithm

Input: Graph G, sample covariance matrix S
Output: MLE $\hat{\Sigma}$ in Gaussian covariance model $\{\mathcal{N}(0, \Sigma): \Sigma \in \mathcal{C}(G)\}$ Initialization: Choose starting value $\hat{\Sigma} \in \mathcal{C}(G)$ and a vertex $w \in V$. Iterations: Repeat the following steps until convergence

Step 1: Fix submatrix $\hat{\Sigma}_{R \times R}$ where $R:=V \backslash\{w\}$.
Step 2: Estimate, by maximum likelihood, w-th row and column of Σ subject to $\Sigma \in \mathcal{C}(G)$ and $\Sigma_{R \times R}=\hat{\Sigma}_{R \times R}$. Step 3: Set $w=w+1 \bmod V$.

The update step in iterative conditional fitting

- Recall conditional distribution:

$$
\left(X_{w} \mid X_{R}\right) \sim \mathcal{N}\left(\Sigma_{\{w\} \times R} \Sigma_{R \times R}^{-1} X_{R}, \sigma_{w w . R}\right)
$$

- Define pseudo-variables

$$
Z_{R}=\Sigma_{R \times R}^{-1} X_{R}
$$

- Spouses of w are the neighbors in the covariance graphs

$$
\operatorname{sp}(w)=\{v \in V:(v, w) \in E\}
$$

- Problem of estimating constrained conditional distribution in Step 2 has closed form solution (rational in S): Least squares regression of X_{w} on the pseudo-variables $Z_{u}, u \in \operatorname{sp}(w)$.

Fitting a 4-variable graph

Example

- Covariance graph G:

- Sample covariance matrix

$$
S=\left(\begin{array}{cccc}
1 & 0.13 & 0.31 & -0.67 \\
& 1 & -0.43 & 0.23 \\
& & 1 & 0.17 \\
& & & 1
\end{array}\right)
$$

- Iterative conditional fitting takes 140 iterations (using defaults for fitCovGraph in R package ggm)

Example (cont.)

- Covariance graph G:

$$
\left(X_{1}, X_{2}\right) \Perp X_{4}
$$

- MLE $\hat{\Sigma}$ is rational in S because G is Markov equivalent to the DAG

$\left(X_{1}, X_{2}\right) \Perp X_{4}$
- Four least squares regressions suffice to compute $\hat{\Sigma}$!

What's coming next. . .

Goal

By removing arrowheads, transform covariance graph into another Markov equivalent graph such that associated model is easier to fit!

Tools

- Ancestral graphs:
removing arrowheads gives mixed graph
maximal ancestral graphs define (conditional) independence models d-separation
- Residual iterative conditional fitting:
can be applied to ancestral graphs reduces to least squares regression for DAGs

Gene expression data

Gene expression data

2. Ancestral graphs

Consider simple mixed graphs with edges of 3 types,

$$
\text { undirected }(-) \text {, directed }(\longrightarrow) \text { and bi-directed }(\longleftrightarrow)
$$

but no loops or multiple edges between two vertices.
Definition (Richardson \& Spirtes, 2002)
A simple mixed graph is ancestral if none of the following occurs:
(i) Undirected edge meets arrowhead: $-v \longleftarrow,-v \longleftrightarrow$
(ii) Directed cycle: $v \longrightarrow \ldots \longrightarrow v$
(iii) Spouse is an ancestor: $v \longleftrightarrow w \longrightarrow \ldots \longrightarrow v$

Example (Non-ancestral graph)

d-Separation in ancestral graphs

Definition

- A vertex v on a path is a collider if the incident edges are of the form:

- A path π d-connects two vertices $v, w \in V$ given $C \subseteq V \backslash\{v, w\}$ if:
(i) if u is a non-collider on π, then $u \notin C$,
(ii) if u is a collider on π, then

$$
u \in \operatorname{An}(C):=C \cup\{s \in V: \exists t \in C \text { s.t. } s \longrightarrow \ldots \longrightarrow t\} .
$$

- Two disjoint and non-empty sets $A, B \subseteq V$ are d-connected given $C \subseteq V \backslash(A \cup B)$ if there is a path that d-connects a vertex $v \in A$ and a vertex $w \in B$ given C.

If there is no such d-connecting path, then C d-separates A and B.

Global Markov property for ancestral graphs

Definition

The joint distribution of a random vector $\left(X_{v} \mid v \in V\right)$ obeys the global Markov property for an ancestral graph $G=(V, E)$ if

$$
C \text { d-separates } A \text { and } B \quad \Longrightarrow \quad X_{A} \Perp X_{B} \mid X_{C} \text {. }
$$

Example

Global Markov property for

yields e.g. $\quad X_{1} \Perp\left(X_{3}, X_{4}, X_{5}\right)\left|X_{2}, \quad\left(X_{1}, X_{2}\right) \Perp X_{4}, \quad\left(X_{1}, X_{2}\right) \Perp X_{5}\right| X_{3}$.

Maximal ancestral graphs

Definition

An ancestral graph is maximal if for every non-edge (v, w) there exists a set $C \subseteq V \backslash\{v, w\}$ such that $C d$-separates v and w.

Example

Global Markov property for

yields e.g. $\quad X_{1} \Perp\left(X_{3}, X_{4}, X_{5}\right)\left|X_{2}, \quad\left(X_{1}, X_{2}\right) \Perp X_{4}, \quad\left(X_{1}, X_{2}\right) \Perp X_{5}\right| X_{3}$.
This graph is a maximal ancestral graph.

Gaussian covariance models

If G is a covariance graph (ancestral graph with only bi-directed edges), then:

- A path d-connecting v and w given C has all non-endpoint vertices in the conditioning set C.
- Global Markov property specializes to
$V \backslash C$ separates A and $B \quad \Longrightarrow \quad X_{A} \Perp X_{B} \mid X_{C}$.
- All distributions in the Gaussian model $\{\mathcal{N}(0, \Sigma): \Sigma \in \mathcal{C}(G)\}$ obey the global Markov property for G (Kauermann, 1996).
- Any ancestral graph that is Markov equivalent to G and has the same adjacencies is also maximal.

Main lemma

In a simple mixed graph $G=(V, E)$, define the boundary of $A \subseteq V$ as

$$
\operatorname{Bd}(A)=A \cup\{v \in V:(v, w) \in E \text { for some } w \in A\}
$$

Definition

A simple mixed graph G has the boundary containment property if

$$
\begin{aligned}
v \longrightarrow w \text { in } G & \Longrightarrow \quad \operatorname{Bd}(v)=\operatorname{Bd}(w) \\
v \longrightarrow w \text { in } G & \Longrightarrow \quad \operatorname{Bd}(v) \subseteq \operatorname{Bd}(w)
\end{aligned}
$$

(In other words: G has no unshielded non-colliders.)

Lemma

Suppose a bi-directed graph G and an ancestral graph H have the same adjacencies. Then G and H are Markov equivalent $\Longleftrightarrow H$ has boundary containment property.
(Ancestral graphs are Markov equivalent if d-separation relations are the same.)

Simplicial graphs

Definition

A vertex $v \in V$ is simplicial, if $\operatorname{Bd}(v)$ is complete, i.e., every pair of vertices in $\operatorname{Bd}(v)$ are adjacent. A subset $A \subseteq V$ is simplicial, if $\operatorname{Bd}(A)$ is complete.

Drop the arrowhead at v :

$$
\text { Replace } v \longleftarrow w \text { by } v-w \quad \text { or } \quad v \longleftrightarrow w \text { by } v \longrightarrow w
$$

Definition

Let G be a bi-directed graph. The simplicial graph G^{s} is the simple mixed graph obtained by dropping all the arrowheads at simplicial vertices of G.

Theorem

The simplicial graph G^{s} of a bi-directed graph G is a maximal ancestral graph that is Markov equivalent to G.

Example \& Markov equivalence

Example

G:

G^{s}

Proposition (Pearl \& Wermuth, 1994)

The bi-directed graph G is Markov equivalent to an undirected graph \Longleftrightarrow Simplicial graph G^{s} is an undirected graph
$\Longleftrightarrow G$ is disjoint union of complete (bi-directed) graphs.

Minimally oriented graphs

Definition

Let G be a bi-directed graph. A minimally oriented graph of G is a maximal ancestral graph $G^{\text {min }}$ such that:
(i) G and $G^{\text {min }}$ are Markov equivalent;
(ii) $G^{\text {min }}$ has the minimum number of arrowheads of all maximal ancestral graphs that are Markov equivalent to G.
(A graph with d directed and b bi-directed edges has $d+2 b$ arrowheads.)
Example (Two minimally oriented graphs)

Construction of minimally oriented graphs

Algorithm

Let G be a bi-directed graph, and \leq a total order on V that extends the partial order \preccurlyeq_{B} obtained from strict boundary containment. Create a new graph $G_{<}^{\text {min }}$ as follows:
(1) find the simplicial graph G^{s} of G;
(2) set $G_{<}^{\text {min }}=G^{s}$;
(0) replace every bi-directed edge $v \longleftrightarrow w \in G_{<}^{\text {min }}$ with $\operatorname{Bd}(v) \subseteq \operatorname{Bd}(w)$ and $v<w$ by the directed edge $v \longrightarrow w$.

Theorem

(i) The graph $G_{<}^{\text {min }}$ constructed in the above algorithm is a minimally oriented graph for the bi-directed graph G.
(ii) If $G^{\text {min }}$ is a minimally oriented graph for a bi-directed graph G, then there exists a total order \leq on the vertex set such that $G^{\text {min }}=G_{<}^{\text {min }}$.

Gene expression data

Chordal cographs

Let $G^{\min }$ be a minimally oriented graph for a bi-directed graph G.

Theorem (Pearl \& Wermuth, 1994)

G is Markov equivalent to a $D A G \Longleftrightarrow G^{\min }$ has no bi-directed edges.

Lemma

$G^{\text {min }}$ has a bi-directed edge $\Longleftrightarrow G$ has an induced subgraph equal to

Chordal cograph: Graph containing neither the path (a) nor the 4-cycle (b)

Residual iterative conditional fitting

Residual iterative conditional fitting is an iterative algorithm that can be used to calculate MLE in Gaussian ancestral graph models:

- Iterations cycle through vertices w and compute least squares regression of X_{w} on $X_{v}, v \in \mathrm{pa}(v)$, and $Z_{u}, u \in \operatorname{sp}(v)$.
- Pseudo-variables are Z_{u} now derived from residuals

Example

Update step for $w=3$:

Least squares regression of X_{3} on X_{2} and Z_{4}

Likelihood inference in Gaussian covariance models

Theorem

(i) If $A \subseteq V$ is simplicial, then $M L E \hat{\Sigma}$ in $\mathcal{C}(G)$ satisfies $\hat{\Sigma}_{A \times A}=S_{A \times A}$.
(ii) If v has no spouses in $G^{\text {min }}$, then

$$
\hat{\Sigma}_{v \times p a(v)} \hat{\Sigma}_{p a(v) \times p a(v)}^{-1}=S_{v \times p a(v)} S_{p a(v) \times p a(v)}^{-1} .
$$

Computational algebra yields. . .

Theorem

The MLE $\hat{\Sigma}$ in $\mathcal{C}(G)$ is a rational function of the sample cov. matrix S $\Longleftrightarrow G$ is a chordal cograph.

Conclusion

- Construction of minimally oriented graph is very similar to "sink orientation' described by Pearl \& Wermuth (1994):
- Start with undirected graph
- Add arrowheads at v if induced subgraph is $\longrightarrow v \longleftarrow$
- Further directed edges may be needed to get ancestral graph (insertion of complete DAGs)
- Graphical constructions also useful for bi-directed graphical models when variables are categorical:
- Binary bi-directed models and ICF (M.D. \& Richardson, 2008)
- Discrete models for chain graphs (M.D., 2008)

Some references

- Covariance graph models:
- M.D. \& Richardson (2008). JMLR
- Pearl \& Wermuth (1994). In Lecture Notes in Statistics
- Kauermann (1996). Scand. J. Statist.
- Butte et al. (2000). PNAS ('relevance networks')
- Wermuth, Cox \& Marchetti (2006). Bernoulli
- Iterative conditional fitting:
- M.D. \& Richardson $(2003,2004)$. UAI
- Chaudhuri, M.D. \& Richardson (2007). Biometrika
- M.D., Eichler \& Richardson (2008). Preprint on arXiv.
- Categorical variables:
- M.D. \& Richardson (2008). JRSS B
- M.D. (2008). Discrete chain graph models, two preprints on my webpage (COMPSTAT)
- Lupparelli, Marchetti \& Bergsma (2008). Preprint on arXiv.

