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1. Covariance graphs

Covariance graph G = (V ,E ) is simple undirected graph
(we draw edges as ←→ and also speak of a bi-directed graph)

Associated set of covariance matrices

C(G ) = {Σ = (σvw ) ∈ PD(V ) : σvw = 0 if (v ,w) 6∈ E}

Example

Graph G :
X1 ←→ X2 ←→ X3 ←→ X4

Associated covariance matrices in C(G ) are tridiagonal:

Σ =


σ11 σ12 0 0
σ12 σ22 σ23 0
0 σ23 σ33 σ34

0 0 σ34 σ44
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ML estimation in Gaussian covariance model

Gaussian covariance model {N (0,Σ) : Σ ∈ C(G )}

Observe n-sample giving rise to a data matrix

X =

X11 . . . X1n
...

...
XV 1 . . . XVn


Sample covariance matrix

S =
1

n
XX t

Compute MLE Σ̂ by maximizing

`(Σ) = − log detΣ− tr(Σ−1S) subject to Σ ∈ C(G ).

Assume sample size n ≥ V s.t. P(S positive definite) = 1.

Mathias Drton (U of Chicago) Graphical methods for covariance models July 1, 2008 4 / 29



Computational algebra

Rational likelihood equations can be solved algebraically for small graphs

Proposition

If V ≤ 4, then the likelihood equations almost surely have one feasible
solution (ML degree 1) except when G is

(a)

X1 X2

X3X4
or (b)

X1 X2

X4 X3

Case (a): ML degree 5 (all 5 solutions may be feasible)
Case (b): ML degree 17.

In both cases (a) and (b) there exist positive definite sample covariance
matrices such that MLE Σ̂ cannot be expressed in radicals.
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Iterative conditional fitting

Goal

Compute MLE of joint distribution of X = (Xv | v ∈ V ) in the model
associated with a covariance graph G = (V ,E ).

Outline of algorithm

Initialization: Choose feasible joint distribution of X and a vertex w ∈ V .

Iterations: Repeat the following steps until convergence

Step 1: Fix marginal distribution of XV \{w}.

Step 2: Estimate conditional distribution of Xw given XV \{w}
under the constraints implied by the graphical model.

Step 3: Compute estimate of joint distribution of X by multi-
plying estimated conditional and fixed marginal distribution.

Step 4: Set w = w + 1 mod V .
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Iterative conditional fitting for Gaussian models

Algorithm

Input: Graph G , sample covariance matrix S

Output: MLE Σ̂ in Gaussian covariance model {N (0,Σ) : Σ ∈ C(G )}

Initialization: Choose starting value Σ̂ ∈ C(G ) and a vertex w ∈ V .

Iterations: Repeat the following steps until convergence

Step 1: Fix submatrix Σ̂R×R where R := V \ {w}.
Step 2: Estimate, by maximum likelihood, w -th row and col-
umn of Σ subject to Σ ∈ C(G ) and ΣR×R = Σ̂R×R .

Step 3: Set w = w + 1 mod V .
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The update step in iterative conditional fitting

Recall conditional distribution:

(Xw | XR) ∼ N (Σ{w}×R Σ−1
R×RXR , σww .R)

Define pseudo-variables

ZR = Σ−1
R×RXR

Spouses of w are the neighbors in the covariance graphs

sp(w) = {v ∈ V : (v ,w) ∈ E}

Problem of estimating constrained conditional distribution in Step 2
has closed form solution (rational in S):

Least squares regression of Xw on the pseudo-variables Zu, u ∈ sp(w).

Mathias Drton (U of Chicago) Graphical methods for covariance models July 1, 2008 8 / 29



Fitting a 4-variable graph

Example

Covariance graph G :

X1 X2

X3X4

Sample covariance matrix

S =


1 0.13 0.31 −0.67

1 −0.43 0.23
1 0.17

1


Iterative conditional fitting takes 140 iterations
(using defaults for fitCovGraph in R package ggm)
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Example (cont.)

Covariance graph G :

X1 X2

X3X4

(X1,X2)⊥⊥X4

MLE Σ̂ is rational in S because G is Markov equivalent to the DAG

X1 X2

X3X4

(X1,X2)⊥⊥X4

Four least squares regressions suffice to compute Σ̂!
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What’s coming next. . .

Goal

By removing arrowheads, transform covariance graph into another Markov
equivalent graph such that associated model is easier to fit!

Tools

Ancestral graphs:
I removing arrowheads gives mixed graph
I maximal ancestral graphs define (conditional) independence models
I d-separation

Residual iterative conditional fitting:
I can be applied to ancestral graphs
I reduces to least squares regression for DAGs
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Gene expression data

GAL7

GAL10

GAL80

GAL3 GAL11

GAL4

GAL2

GAL1

> system.time( for(i in 1:10)
fitCovGraph(G,S,n) )

user system elapsed
6.746 0.014 6.762
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Gene expression data

GAL7

GAL10

GAL80

GAL3 GAL11

GAL4

GAL2

GAL1

> system.time( for(i in 1:10)
fitAncestralGraph(G,S,n) )

user system elapsed
0.199 0.002 0.201
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2. Ancestral graphs

Consider simple mixed graphs with edges of 3 types,

undirected (−−−), directed (−→) and bi-directed (←→)

but no loops or multiple edges between two vertices.

Definition (Richardson & Spirtes, 2002)

A simple mixed graph is ancestral if none of the following occurs:

(i) Undirected edge meets arrowhead: −−−v ←−,−−−v ←→
(ii) Directed cycle: v −→ . . . −→ v

(iii) Spouse is an ancestor: v ←→ w −→ . . . −→ v

Example (Non-ancestral graph)

X1 X2 X3 X4 X5
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d -Separation in ancestral graphs

Definition

A vertex v on a path is a collider if the incident edges are of the form:

−→ v ←−, ←→ v ←→, ←→ v ←−

A path π d-connects two vertices v , w ∈ V given C ⊆ V \ {v ,w} if:

(i) if u is a non-collider on π, then u 6∈ C ,
(ii) if u is a collider on π, then

u ∈ An(C ) := C ∪ {s ∈ V : ∃t ∈ C s.t. s −→ . . . −→ t}.

Two disjoint and non-empty sets A, B ⊆ V are d-connected given
C ⊆ V \ (A∪B) if there is a path that d-connects a vertex v ∈ A and
a vertex w ∈ B given C .

If there is no such d-connecting path, then C d-separates A and B.
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Global Markov property for ancestral graphs

Definition

The joint distribution of a random vector (Xv | v ∈ V ) obeys the global
Markov property for an ancestral graph G = (V ,E ) if

C d-separates A and B =⇒ XA⊥⊥XB | XC .

Example

Global Markov property for

X4

X5X1 X2 X3

yields e.g. X1⊥⊥(X3,X4,X5) | X2, (X1,X2)⊥⊥X4, (X1,X2)⊥⊥X5 | X3.
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Maximal ancestral graphs

Definition

An ancestral graph is maximal if for every non-edge (v ,w) there exists a
set C ⊆ V \ {v ,w} such that C d-separates v and w .

Example

Global Markov property for

X4

X5X1 X2 X3

yields e.g. X1⊥⊥(X3,X4,X5) | X2, (X1,X2)⊥⊥X4, (X1,X2)⊥⊥X5 | X3.
This graph is a maximal ancestral graph.
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Gaussian covariance models

If G is a covariance graph (ancestral graph with only bi-directed edges),
then:

A path d-connecting v and w given C has all non-endpoint vertices in
the conditioning set C .

Global Markov property specializes to

V \ C separates A and B =⇒ XA⊥⊥XB | XC .

All distributions in the Gaussian model {N (0,Σ) : Σ ∈ C(G )} obey
the global Markov property for G (Kauermann, 1996).

Any ancestral graph that is Markov equivalent to G and has the same
adjacencies is also maximal.
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Main lemma

In a simple mixed graph G = (V ,E ), define the boundary of A ⊆ V as

Bd(A) = A ∪ {v ∈ V : (v ,w) ∈ E for some w ∈ A}.

Definition

A simple mixed graph G has the boundary containment property if

v −−− w in G =⇒ Bd(v) = Bd(w)

v −→ w in G =⇒ Bd(v) ⊆ Bd(w)

(In other words: G has no unshielded non-colliders.)

Lemma

Suppose a bi-directed graph G and an ancestral graph H have the same
adjacencies. Then G and H are Markov equivalent ⇐⇒ H has boundary
containment property.

(Ancestral graphs are Markov equivalent if d-separation relations are the same.)
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Simplicial graphs

Definition

A vertex v ∈ V is simplicial, if Bd(v) is complete, i.e., every pair of vertices
in Bd(v) are adjacent. A subset A ⊆ V is simplicial, if Bd(A) is complete.

Drop the arrowhead at v :
Replace v ←− w by v −−− w or v ←→ w by v −→ w

Definition

Let G be a bi-directed graph. The simplicial graph G s is the simple mixed
graph obtained by dropping all the arrowheads at simplicial vertices of G .

Theorem

The simplicial graph G s of a bi-directed graph G is a maximal ancestral
graph that is Markov equivalent to G.
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Example & Markov equivalence

Example

G : G s :

X1

X2

X3

X4 X1

X2

X3

X4

Proposition (Pearl & Wermuth, 1994)

The bi-directed graph G is Markov equivalent to an undirected graph
⇐⇒ Simplicial graph G s is an undirected graph
⇐⇒ G is disjoint union of complete (bi-directed) graphs.
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Minimally oriented graphs

Definition

Let G be a bi-directed graph. A minimally oriented graph of G is a
maximal ancestral graph Gmin such that:

(i) G and Gmin are Markov equivalent;

(ii) Gmin has the minimum number of arrowheads of all maximal
ancestral graphs that are Markov equivalent to G .

(A graph with d directed and b bi-directed edges has d + 2b arrowheads.)

Example (Two minimally oriented graphs)

X1

X2

X3

X4 X1

X2

X3

X4
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Construction of minimally oriented graphs

Algorithm

Let G be a bi-directed graph, and ≤ a total order on V that extends the
partial order 4B obtained from strict boundary containment. Create a new
graph Gmin

< as follows:

1 find the simplicial graph G s of G ;

2 set Gmin
< = G s ;

3 replace every bi-directed edge v ←→ w ∈ Gmin
< with Bd(v) ⊆ Bd(w)

and v < w by the directed edge v −→ w .

Theorem

(i) The graph Gmin
< constructed in the above algorithm is a minimally

oriented graph for the bi-directed graph G.

(ii) If Gmin is a minimally oriented graph for a bi-directed graph G, then
there exists a total order ≤ on the vertex set such that Gmin = Gmin

< .
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Gene expression data

GAL7

GAL10

GAL80

GAL3 GAL11

GAL4

GAL2

GAL1

> system.time( for(i in 1:10)
fitAncestralGraph(G,S,n) )

user system elapsed
0.199 0.002 0.201
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Chordal cographs

Let Gmin be a minimally oriented graph for a bi-directed graph G .

Theorem (Pearl & Wermuth, 1994)

G is Markov equivalent to a DAG ⇐⇒ Gmin has no bi-directed edges.

Lemma

Gmin has a bi-directed edge ⇐⇒ G has an induced subgraph equal to

(a)

X1 X2

X3X4
or (b)

X1 X2

X4 X3
.

Chordal cograph: Graph containing neither the path (a) nor the 4-cycle (b)
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Residual iterative conditional fitting

Residual iterative conditional fitting is an iterative algorithm that can be
used to calculate MLE in Gaussian ancestral graph models:

Iterations cycle through vertices w and compute least squares
regression of Xw on Xv , v ∈ pa(v), and Zu, u ∈ sp(v).

Pseudo-variables are Zu now derived from residuals

Example

Update step for w = 3:

Z4

X5X1 X2 X3

Least squares regression of X3 on X2 and Z4
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Likelihood inference in Gaussian covariance models

Theorem

(i) If A ⊆ V is simplicial, then MLE Σ̂ in C(G ) satisfies Σ̂A×A = SA×A.

(ii) If v has no spouses in Gmin, then

Σ̂v×pa(v)Σ̂
−1
pa(v)×pa(v) = Sv×pa(v)S

−1
pa(v)×pa(v).

Computational algebra yields. . .

Theorem

The MLE Σ̂ in C(G ) is a rational function of the sample cov. matrix S
⇐⇒ G is a chordal cograph.
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Conclusion

Construction of minimally oriented graph is very similar to ‘sink
orientation’ described by Pearl & Wermuth (1994):

I Start with undirected graph
I Add arrowheads at v if induced subgraph is −→ v ←−
I Further directed edges may be needed to get ancestral graph

(insertion of complete DAGs)

Graphical constructions also useful for bi-directed graphical models
when variables are categorical:

I Binary bi-directed models and ICF (M.D. & Richardson, 2008)
I Discrete models for chain graphs (M.D., 2008)
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