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Gaussian Graphical Models (GGMs)
The G -Wishart distribution WG (δ, D) (Roverato, 2002; Letac and Massam,
2007; Atay-Kayis and Massam, 2005)

It generalizes the hyper inverse Wishart of Dawid and Lauritzen (1993).
Its density is

p(K |G ) =
1

IG (δ,D)
(det K )(δ−2)/2 exp

{
−1

2
〈K ,D〉

}
.

wrt the Lebesgue measure on PG . The posterior of K is
WG (δ + n,D + U). The marginal likelihood of G is

p(x (1:n)|G ) = IG (δ + n,D + U)/IG (δ,D).
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Properties of the G-Wishart WG (δ, D)

When graph is complete, it reduces to the Wishart distribution.

It is strong hyper-Markov wrt a graph G .

1 Formulas available for decomposable graphs.
2 Decompositions in prime components and separators.

Finding its mode is fast and accurate using the Iterative Proportional
Fitting (IPF) algorithm.

Sampling is possible using the Bayesian IPF of Piccioni (2000).
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Sampling from the G-Wishart WG (δ, D)
The Bayesian IPF (Piccioni, 2000)

Define the operator from PG into PG

MC ,AK =

(
A−1 + KC ,V \C (KV \C )−1KV \C ,C KC ,V \C

KV \C ,C KV \C

)
.

which is such that [(MC ,AK )−1]C = A. To find the mode of WG (δ,D),
use IPF with L = D/(δ − 2):

Step a. Set K r+(0/k) = K r .

Step b. For each j = 1, . . . , k, set K r+(j/k) = MCj ,LCj
K r+((j−1)/k).

Step c. Set K r+1 = K r+(k/k).

To sample from WG (δ,D), use BIPF. Just replace Step b with:

Step b’. Simulate A from W|Cj |(δ,DCj
) and set

K r+(j/k) = MCj ,A−1K r+((j−1)/k).
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Properties of the G-Wishart WG (δ, D)
The Laplace approximation for IG (δ, D)

̂IG (δ,D) = hδ,D(K̂ )(2π)|V|/2[det Hδ,D(K̂ )]−1/2,

where K̂ ∈ PG is the mode of WG (δ,D), Hδ,D is the Hessian and

hδ,D(K ) = −1

2

[
tr(KTD)− (δ − 2) log(det K )

]
.

For (i , j), (l ,m) ∈ V, the ((i , j), (l ,m)) entry of Hδ,D is given by

d2hδ,D(K )

dKijdKlm
= −δ − 2

2
tr

{
K−1(1ij)

0K−1(1lm)0
}

.
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Example: Simulating from the C5-Wishart
C5 is the cycle with length five

Need to use the Monte Carlo method of Atay-Kayis and Massam (2005) to estimate the prior

normalizing constant.
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Figure: Marginal distributions of K12 based on 10, 000 samples from the
G-Wishart prior WC5(3, I5) and the G-Wishart posteriors WC5(13,D∗

10) (sample
size n = 10) and WC5(28,D∗

25) (sample size n = 25). The vertical line x = 0.5
shows the true value of K12.
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Log-linear models
Parametrization of the four-cycle

Let V = {a, b, c , d}, E all subsets of V and D all complete subsets of V :

D = {a, b, c , d , ab, bc , cd , da},
E = {a, b, c , d , ab, bc , cd , da, ac, bd , abc , bcd , cda, dab, abcd}.

Take

θE =
∑
F⊆E

log p
(−1)|E\F |

F ⇔ log pE =
∑
F⊆E

θF .

Distribution of X = (Xa,Xb,Xc ,Xd) is Markov wrt to four-cycle means:

θE = 0 for E /∈ D.

which implies:

pac =
papc

p∅
, pbd =

pbpd

p∅
, pabc =

pabpbc

pb
, pbcd =

pbcpcd

pc
, pcda =

pcdpda

pd
,

pdab =
pdapab

pa
, pabcd =

pabpbcpcdp∅
papbpcpd

.
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Conjugate Priors for Log-linear Parameters
Diaconis and Ylvisaker, 1979; Massam, Liu and Dobra, 2008

The likelihood for a model G in terms of (θD ,D ∈ D) is:

f (y ; θ, G ) = exp

∑
D∈D

θDyD − n log

1 +
∑
E∈E

exp

 ∑
D⊆E ,D∈D

θD

 .

The conjugate prior is the generalized hyper Dirichlet which generalizes
the hyper Dirichlet of Dawid and Lauritzen (1993):

πG (θ|s, α) = IG (s, α)−1 exp

∑
D∈D

θDsD − α log

1 +
∑
E∈E

exp

 ∑
D⊆E ,D∈D

θD

 .

The posterior of (θD ,D ∈ D) is πG (y + s, n + α). The marginal likelihood
of G is:

P(Y |G ) = IG (y + s, n + α)/IG (s, α).
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Properties of the generalized hyper
Dirichlet πG (θ|s, α)

When model is decomposable, it reduces to the hyper Dirichlet.

It is strong hyper-Markov wrt a graph G .

1 Formulas available for decomposable graphs.
2 Decompositions in prime components and separators.

Finding its mode is fast and accurate using the Iterative Proportional
Fitting (IPF) algorithm.

Sampling is possible using the Bayesian IPF of Piccioni (2000).
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Sampling from πG (θ|s, α)
The Bayesian IPF (Piccioni, 2000)

Start with a random choice of (θ
(0)
D ,D ∈ D). For each model generator Cl ,

l = 1, 2, . . . ,m do:

1 Generate marginals τCl
(D), D ⊂ Cl as independent Gammas with

shape
∑

D⊆F⊆Cl

(−1)|F\D| and scale 1/α.

2 Normalize τCl
(D), D ⊂ Cl to obtain marginal tables pCl

(D), D ⊂ Cl .
3 Compute the corresponding (θl(E ),E ⊆ Cl):

θ
k+ l

m (E) = θk,l (E ∩ Cl ) +
X

F⊂E,F∈E0

(−1)|E\F|−1 log

0B@1 +
X

L⊆Cc
l

,L∈E
exp

0@ X
C 6⊆F,C⊆F∪L

θ
k+ l−1

m (C)

1A
1CA .

4 Set θk+ l
m (E ) = 0 for all E 6∈ D.

Adrian Dobra University of Washington ( Joint work with Héléne Massam and Alex Lenkoski York University and University of Washington London Mathematical Society Durham Symposium Mathematical Aspects of Graphical Models)Bayesian structural learning and estimation in Gaussian graphical models and hierarchical log-linear modelsJuly 8, 2008 10 / 26



Properties of πG (θ|s, α)
The Laplace approximation for IG (s, α)

̂ID(s, α) ≈ hs,α(θ̂D)(2π)
dD
2 det(Hs,α(θ̂D))−1/2.

The entries of the Hessian are:

d2hs,α(θD)

dθ(iD)dθ(lH)
= −α

X
G∈E	
G⊇D

X
jG∈I

∗
G

(jG )D=iD

p(j(G))

26664δ(jG )H
(lH)−

X
(jC )H =lH

C∈E	,jC∈I
∗
C

p(j(C))

37775 .

where

δ(jG )H (lH) =

{
1, if (jG )H = lH ,
0, otherwise.
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Bayesian Model Choice

Candidate models: {Mm,m = 1, . . . ,M}. Models are connected through
their neighborhoods. Perform model selection using the posterior model
probabilities:

{p(Mm|D),m = 1, . . . ,M}.

Possible decisions:

1 Select the best model Mm∗ with the highest posterior probability.

2 Average across all models.

3 Average across a reduced set of models:

M(c) = {Mm : p(Mm∗|D) ≥ c · p(Mm|D)}.

As n →∞ and M is fixed, M(c) → {Mm∗}. However, as M →∞ and n
is fixed, p(M(c)|D) → 0.
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The Mode Oriented Stochastic Search
(MOSS)

The precursor of MOSS is the Shotgun Stochastic Search (SSS) algorithm
(Jones et al., 2005; Hans et al., 2007).

MOSS(c)

Let S be the models visited so far and L be the unexplored models. Do:
Step (A). Sample a model Mj ∈ L with probabilities proportional with
p(Mj |D). Mark Mj as explored.
Step (B). Include in S all the neighbors of Mj .
Step (C). If L is empty, output S(c) and STOP. Otherwise go to (A).

Theorem

At each iteration, the probability that MOSS finds Mm∗ is greater than
the probability that any Markov chain algorithm finds Mm∗.
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Example: Efficiency of MOSS

Experiment: Simulate 50 samples from a decomposable graph with 25
vertices. Only 10 vertices are linked with edges (Scott & Carvalho, 2008).

Marginal Likelihood
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Figure: Distribution of the top 250 marginal likelihoods returned by MOSS,
SSS and MC3 algorithms after evaluating the same number of models and
starting at the same randomly generated graph.
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GGMs Simulated Study: Yuan and Lin (2007)
SEE PAGE 3 OF THE HANDOUT

Comparison of MOSS, Yuan and Lin (2007), Meinshausen and
Bühlmann (2006), Drton and Perlman (2004).

Experiment: simulate 25 samples of dimension p = 5 and p = 10
from eight different models: AR(1), AR(2), AR(3), AR(4), a full
graph, a star graph with every vertex conected to the first vertex and
a circle graph. Repeat 100 times.

Assess performance using the average Kullback-Leibler (KL) loss
across the replicates; number of false positive and false negative
edges.

Conclusion: MOSS does consistently better than the other three
approaches.
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Example: Modeling growth determinant
uncertainty using GGMs
SEE PAGE 4 OF THE HANDOUT

Dataset with 41 potential growth determinants from Fernandez et al.
(2001).

Economists hypothesized the existence of seven growth determinants.

Previous studies based on linear regressions found between 2 and 22
predictors (Theo Eicher, Mark Steel, etc).

With the same prior specification, our results show:
1 Linear regressions: 17 growth determinants.
2 GGMs: seven (relevant) and one (marginally relevant) growth

determinants.
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Example: Household Study in Rochdale
Source: Whittaker (1990) page 279

Eight dichotomous variables relating women’s economic activity and
husband’s unemployment in Rochdale:

1 A, wife economically active (no,yes)

2 B, age of wife > 38 (no,yes)

3 C, husband unemployed (no,yes)

4 D, child ≤ 4 (no,yes)

5 E, wife’s education, high-school+ (no,yes)

6 F, husband’s education, high-school+ (no,yes)

7 G, asian origin (no,yes)

8 H, other household member working (no,yes).
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Example: Household study in Rochdale
Source: Whittaker (1990) page 279

Sparse table with 665 individuals cross-classified in 256 cells, 165 counts of
zero, 217 counts ≤ 3 and a few large counts ≥ 30.

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0
17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0
5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Example: Household study in Rochdale
Source: Whittaker (1990)

“[...] it is impossible to detect many high order interactions, and one
should hesitate to fit the saturated log-linear model [...] However we
may fit the all two-way interactions model, because the sufficient
statistics are the two-way marginal tables and the entries in these
tables are quite respectable. [...] Here, we adopt the quick model
selection method of selecting interactions for which the square of the
standardized parameter estimate exceeds 3.84.”

Based on this heuristic, Joe arrives at the hierarchical model

[FG ][EF ][DH][DG ][CG ][CF ][CE ][BH][BE ][BD][AG ][AE ][AD][AC ].

Total number of possible hierarchical models: 5.6× 1022.
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Example: Household study in Rochdale
SEE PAGE 2 OF THE HANDOUT

Joe Whittaker’s analysis determined:

[FG ][EF ][DH][DG ][CG ][CF ][CE ][BH][BE ][BD][AG ][AE ][AD][AC ].

Best decomposable graphical model determined by MOSS:

[EFG ][BEG ][BDH][BDG ][ADG ][ACG ].

Best graphical model determined by MOSS (out of 228 possible models):

[FG ][EF ][BE ][BDH][BDG ][ADG ][ACG ][ACE ].

Best hierarchical model determined by MOSS (out of 5.6× 1022 possible
models):

[FG ][EF ][DG ][CG ][CF ][CE ][BE ][BDH][AG ][AE ][AD][AC ].
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Example: Household study in Rochdale
Predicting Women’s Economic Activity

Markov blanchet of A is C ,D,E ,G . MOSS determines best hierarchical
model:

[FG ][EF ][DG ][CG ][CF ][CE ][BE ][BDH][AG ][AE ][AD][AC ].
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Example: Household study in Rochdale
Predicting Women’s Economic Activity

Whittaker (1990) estimates logistic regression as:

log
p(a = 1|c , d , e, g)

p(a = 0|c , d , e, g)
= const.− 1.33c − 1.32d + 0.69e − 2.17g ,

with standard errors 0.3, 0.21, 0.2, 0.47. We estimate the same regression
equation to be:

log
p(a = 1|c , d , e, g)

p(a = 0|c , d , e, g)
= const.− 1.30c − 1.26d + 0.70e − 2.31g ,

with standard errors 0.29, 0.2, 0.19 and 0.47.
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Multivariate Regressions

Covariates grouped as responses Y and explanatory X . Possibly X is
much bigger than Y . We are interested in learning p(Y |X ) and not the
joint p(Y ,X ).

Theorem

(Whittaker, 1990) The conditional independence relationships from
p(Y |X ) are embedded in graphs having complete subgraphs associated
with X .
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Example: Genome-wide Analysis of Estrogen
Response with Dense SNP Array Data
Source: Dobra et al. (2008)

60 cell lines from NCI used to study resistance to estrogen response
(Jarjanazi et al., 2008):

25 cell lines were resistant.

17 cell lines were sensitive.

Genotypes of SNPs in these 42 cell lines were obtained from the
Affymetrix 125K chip data – only 25, 530 SNPs were retained. A
segregating SNP site has three possible genotypes: 0/0, 0/1 and 1/1.

The data is a 2× 325530 contigency table with 42 samples.
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Example: Genome-wide Analysis of Estrogen
Response with Dense SNP Array Data

MOSS selects 17 SNPs that appear in regressions with at most 3 variables.
Total number of such regressions: 2.77× 1012. Mean number of models
evaluated by MOSS: 2, 407, 299.
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Some Concluding Remarks

Papers and code available from my website:

http://www.stat.washington.edu/adobra/
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