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The H-theorem for dynamical systems:

Suppose that a transformation T on a phase

space X has some invariant measure µ,

Suppose also that there is some mixing type

mechanism of the approach to equilibrium for

T , i.e. there is a sufficiently large family of

non-equilibrium measures ν such that for all

E,

νt(E) =: ν(T−tE)→t→∞ µ(E)

The H-theorem means the existence of a negative

entropy functional S(νt) which increases

monotonically with t to zero, attained only for

ν = µ.
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Starting with the non-equilibrium initial measure

ν, and partition formed with finite number of

cells P = (P1,P2, ..., Pn), then,

νt(Pi) = ν ◦ T−t(Pi)

is the probability at time t for the system to

be in the cell Pi.

The approach to equilibrium implies that

νt(Pi)→ µ(Pi)

as t→∞ for any i.
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An entropy functional is defined as

the relative entropy of the non-equilibrium mea-

sure νt with respect to µ for the observation P

S(t, ν,P) = −
n∑
i=1

νt(Pi) ln(
νt(Pi)
µ(Pi)

) := −H(t, ν,P)

(1)

The H-functional (1) is maximal when the ini-

tial distribution is concentrated on only one cell

and minimal if and only if νt(Pi) = µ(Pi), ∀i.
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A condition under which formula (1) shows a

monotonic increase with respect to t is that

the process νt(Pi) = ν ◦ T−t(Pi) verifies the

Chapman-Kolmogorov equation valid for Markov

chains and also for other long memory chains.

For a dynamical system, this condition is hardly

verified for given partition P.

However, a very rapid mixing leads to the in-

crease of the above entropy, at least during

some initial stage, comparable with the relax-

ation stage in gas theory.

We compute the increase of such entropy func-

tionals for some remarkable non-equilibrium dis-

tributions over the phase space of the Sinäı

billiard.
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The billiard is a hyperbolic system (with many

singularity lines) and, in order to have a rapid

mixing, we will consider initial distributions

supported by the expanding fibers.

In billiard, the expanding fibers are approxi-

mated by colliding particles with parallel velocities.

We call this class of initial ensembles beams

of particles.
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Figure 1: The motion of the particle on a toric billiard.
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The Lorentz collision map

Discrete time dynamics on the set of all ingoing

unitary velocity arrows V(P ) at some point of

the boundary of the disk.

To a colliding arrow V1(P1) at point P1 on

the boundary of the disk the map associates

the next colliding arrow V2(P2) according to

elastic reflection law.

The collision map does not take into account

the free evolution between successive collisions.
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Figure 13: non-crossing Collision.
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Figure 14: crossing Collision.
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The phase space : two angles (β, ψ), where

β is the angle between the outer normal at P

and the incoming arrows V(P ), β ∈ [0, π2[, and

ψ ∈ [0, π] is the angle between x-axis and the

outer normal at P . The collision map induces

a map: (β1, ψ1)→ (β2, ψ2)

We used a uniform rectangular partition of the

(β, ψ) space with the invariant measure:

µ(Pi) =
∫ βi+1

βi

∫ ψi+1

ψi
cosβdβdψ (2)
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Figure 2: Entropy of the collision map versus number of collisions for (a) a beam of
640 particles for a radius a=0.2, neighboring disks centers distance 1 and a partition of
(β, ψ) space into 25× 25 cells, (b) a beam of 512 particles for the obstacles of radius 0.2,
neighboring disks centers distance 1 and a partition of (β, ψ) space into 9× 9 cells.
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Figure 3: (a) and (b) are the entropy of the collision map with random initial conditions
versus number of collisions for the system of particles of the Fig. 2, respectively.
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Figure 4: Logarithm of the collision map entropy versus number of collisions for the
system of particles of the Fig. 2.
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In order to compare the entropy increase as a

function of the collision number with the en-

tropy increase as a function of time, we com-

pute the distribution of mean free time
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Rate of increase and Lyapounov exponents

max(S(k+ 1)− S(k)) ≡ 4S ≤
∑
λi≥0

λi (3)

where the ”max” is taken over k.
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Figure 5: (a) Lyapounov exponent and (b) entropy of the collision map, versus of number
of collisions for each particle. We see that the maximum of the entropy increase between
two collisions is less than of the value of the Lyapounov exponent.
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Spatially extended Lorentz gas entropy

N particles move in a large torus with n cells,

in the center of each cell there is one disk. Ini-

tially the particles are distributed in only one

cell followed until each executes t collisions

with obstacles.

The probability that a particle is located in the

ith cell is defined by:

ρi(t) =

Number of particles in cell ihavingmade t collisions

N

The equi-distribution is the equilibrium mea-

sure, µi = 1
n. The ”space entropy” is defined

by:

Ssp(t) = −
n∑
i=1

ρi(t) ln(ρi(t)n) (4)
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The maximum of absolute value of this entropy

is equal to − lnn.

The normalized space entropy is defined by:

ssp(t) =
Ssp(t)
lnn

(5)
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Figure 8: (a) Normalized space entropy of the Lorentz gas versus number of collisions for
a beam of 640 particles for obstacles of radius a=0.2, neighboring disks centers distance 1
and a partition of (x, y) space into 25×25 cells, (b) Logarithm of the space entropy versus
number of collisions for this system.
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Hard disks

N hard disks move in a large torus divided into

n square cells. Initially the disks are distributed

in only one cell, with random velocities.

Only binary collisions are considered.

The probability that a particle is located at

time t in the ith cell is defined as above.

Define thenormalized sum of the positive Lya-

pounov exponents

1

N

∑
λi>0

(
λi

λmax
)

13



Figure 9: (a) Normalized space entropy and its monotonic part logarithm of the hard
disks versus time for the 128 particles for the obstacles of radius a=0.05 which are initially
localized in the first cell of (x, y) space with 6× 6 cells and a density σ1 = 0.889 disks per
unit area.
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Figure 10: Normalized space entropy and its and its monotonic part logarithm for the
same system as Fig. 9, with a density σ2 = 3.555 disks per unit area.
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Figure 11: Number of collisions histogram system versus time in Fig. 9.
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The computation shows that the in-
equality between the normalized entropy
increase and the normalized sum of pos-
itive Lyapounov exponents is verified .

Density 1
N

∑
λi>0(

λi
λmax

) 4ssp

3.555 0.367 0.139
0.889 0.294 0.115
0.222 0.239 0.144

Table 1: Hard disks systems of radius a = 0.05 with 6× 6

cells, in terms of the density.
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