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Consider a type IIB string propagating in the ten-dimensional

spacetime R
1,3 × X , where X is a smooth Calabi–Yau

threefold.

The type IIB string contains open strings which must end on

odd-dimensional D-Branes.

Suppose these D-branes fill the whole of R
1,3 and have a

remaining even number of dimensions in X .

A particularly easy class of D-branes to study are the BPS

branes which, naı̈vely, correspond to holomorphic vector

bundles over holomorphic submanifolds of X .

2



x

Σ

D-brane

D-brane

3



Unfortunately the statement that D-branes are subspaces only

seems to make good sense when X is very large.

Stringy geometry (especially mirror symmetry) requires a more

sophisticated concept in general.

One needs the derived category!
Kontsevich, Douglas
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Actually the statement that we need the derived category is not

surprising, nor is it bad news.

All our analysis may be done in terms of the topological

B-model.

The study of topological field theories is a study of

cohomology, and thus derived functors. . .

The derived category also provides a good conceptual

framework for practical computations.
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For our purposes a D-brane on X is a finite complex of

coherent sheaves (which may ultimately be holomorphic vector

bundles).

. . . A0 A1 A2 . . .

A complex submanifold W ⊂ X would be represented by the

single coherent sheaf at position zero:

. . . OW 0 0 . . .
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A chain map between two complexes

. . . A0 A1 A2 . . .

. . . B0 B1 B2 . . .

is a quasi-isomorphism if it induces the identity map on the

cohomology of the two complexes.

Two D-branes are identical if they are represented by

quasi-isomorphic complexes.

“Quotienting” by this “equivalence” yields the derived

category.
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A chain map between two complexes is simply an open string

between the two D-branes.

More precisely, let Hom(A•, B•) represent the space of

morphisms in the derived category between objects A• and B•

and let A•[q] represent the complex A• shifted left by q places.

Then the Hilbert space of open strings in the topological

B-model between the D-branes A• and B• is given by

Hom(A•, B•[q]) = Extq(A•, B•)

for all q ∈ Z (the ghost number).
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An open string f : A• → B• may bind two D-branes (anti-A

and B) together to form the mapping cone of f :

. . .

A0

⊕
B−1

„
dA 0
f dB

« A1

⊕
B0

„
dA 0
f dB

« A2

⊕
B1
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Any complex may be built from single-term complexes by

iteratively using the cone construction.

Thus we may always view a complex in terms of a bound state

of many branes corresponding to single-term complexes (so

long as we carefully keep note of anti-branes in the right way).

Thus, every D-brane is some collection of more naı̈ve branes.

Actually every D-brane may be viewed as a collection of vector

bundles, i.e., branes that wrap all of X .
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Whether or not an open string really does bind two D-branes

together or not depends on whether that open string is

tachyonic or not.

This depends on the value of the complexified Kähler form

B + iJ ∈ H2(X, C∗).

Thus, only certain objects in D(X) are stable in the sense that

the complex will not decay via mapping cones. These objects

are said to be Π-stable.
Douglas, Fiol, Römelsberger
PSA, Douglas
Bridgeland
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So far we have focused on the Calabi–Yau part of spacetime.

Recall that our D-brane also filled flat spacetime R
1,3.

This gives rise to a four-dimensional quantum field theory for

the D-brane world-volume. Since the D-brane is BPS, we have

N = 1 supersymmetry.

The identity map in Hom(A•, A•) gives rise to an open string

corresponding to a photon.

Thus we have an N = 1 supersymmetric (at least) U(1)-gauge

theory in four dimensions.
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An object A• is simple if Hom(A•, A•) ∼= C.

Suppose, instead, that

A• =
N⊕

j=1

C•,

where C• is simple.

Then Hom(A•, A•) ∼= C
N2

, and we have a U(N) gauge theory.
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Open strings in Ext1(A•, A•) give rise to massless chiral

supermultiplets in our field theory (transforming in the adjoint

of U(N)).

Giving the scalar field a vacuum expectation value in such a

field theory corresponds to deforming the theory, i.e.,

deforming or moving the D-brane.

An N = 1 field theory contains a superpotential W which is a

polynomial of the chiral superfields xj . The vacuum must

satisfy
∂W

∂xj

= 0.
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It is well-known that Ext1(A•, A•) gives the space of

first-order deformations of A•.

Whether or not such a first-order deformation can be integrated

to a true deformation requires some knowledge of obstructions.

Since the superpotential also “knows” about these

deformations, it must be that the superpotential encodes the

information of obstruction theory.
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For a suitable value of B + iJ , a D-brane might be marginally

stable with respect to a decay into N1 copies of some D-brane,

N2 copies of some other D-brane, etc.

This gives an N = 1 gauge theory with gauge group

U(N1) × U(N2) × . . ..

The fact that the given D-brane is marginally stable means that

there will be massless open strings between the decay products.

These strings give rise to massless chiral supermultiplets in

bifundamental (N1,N2) representations etc.

A “quiver” gauge theory – also with a superpotential.
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“Ext Quiver”

U(2)

U(5)

U(1)

U(3)

(3,5)

The arrows are the chiral superfields.

Giving nonzero values to these arrows yields a quiver

representation.
Matrices
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The superpotential is a function of all these chiral superfields.

W = Tr(ABC + . . .).

This superpotential can impose relations on quiver and higher

order obstructions.

We want a general method for computing the superpotential!
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Various techniques have been given in the literature for various
examples:

• Douglas, Moore

• Brunner, Douglas, Lawrence, Römelsberger

• Klebanov, Witten

• Morrison, Plesser

• Kachru, Katz, Lawrence, McGreevy

• Cachazo, Katz, Vafa

• Douglas, Govindarayan, Jayaraman, Tomasiello

• Herbst, Lazaroiu, Lerche

• Aganagic, Vafa

• Ashok, Dell’Aquila, Diaconescu, Florea

Here we give a solution to the problem for gs → 0.
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The key structure to the superpotential is an A∞-algebra (for

one type of D-brane), or its generalization to an A∞-category

(in the case of the quiver gauge theory).

Let A be a graded vector space over C. We equip A with

“higher products”:

mk : A⊗k → A, (1)

The map mk has degree 2 − k with respect to the grading.

We demand∑
r+s+t=n

(−1)r+stmu(1
⊗r ⊗ ms ⊗ 1⊗t) = 0, (2)

for any n > 0, where u = n + 1 − s.
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These may be viewed as generalized associativity conditions.

m1m1 = 0

m2(m1 ⊗ 1 + 1 ⊗ m1) = m1m2

m2(1 ⊗ m2 − m2 ⊗ 1) = . . .

(3)

The A∞ category may be defined similarly by giving the

morphisms a higher product structure.
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Now consider the topological B-model for open strings

between B-type D-branes.

For simplicity, for now, assume we have only one D-brane C•.

The Hilbert space of open strings is given by

A =
⊕

q

Extq(C•, C•).

The grading is, of course, given by q (the ghost number).
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The open strings are associated to local vertex operators ψi in

the topological field theory.

These ψi’s may be viewed as a basis for A.

To each such vertex operator, one may construct a 1-form

operator

ψ
(1)
i = 1√

2

{
G−

− 1
2

+ G
−
− 1

2
, ψi

}
, (4)

These 1-form operators may be used to deform the topological

field theory (at least to first order):

S → S +
∑

i

Zi

∮
ψ

(1)
i . (5)
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The Zi are complex numbers as far as the topological field

theory is concerned.

The Zi (for q = 1) are (the scalar components of) chiral

superfields in the effective world-volume theory.

The above deformations correspond to giving vacuum

expectations values to these fields.

The chiral superfields are naturally dual to the

vertex operators of the topological quantum field theory.
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Define (up to suppressed signs) on a disk

Bi0,i1,...,ik = 〈ψi0 ψi1 P

∫
ψ

(1)
i2

∫
ψ

(1)
i3

. . .

∫
ψ

(1)
ik−1

ψik〉, (6)

In the case of N copies of a simple D-brane, the fields Zi

naturally form N × N matrices. We may now write the

tree-level superpotential Brunner, Douglas, Lawrence, Römelsberger

W = Tr

( ∞∑
k=2

∑
i0,i1,...,ik

Bi0,i1,...,ik

k + 1
Zi0Zi1 . . . Zik

)
.
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If X is a Calabi–Yau threefold, there is also a “trace map” of

degree −3 (Serre duality: Ext3(C•, C•) ∼= C)

γ : A → C. (7)

The correlation functions may be written in the form

Bi0,i1,...,ik = γ
(
m2

(
mk(ψi0 , ψi1 , . . . , ψik−1

), ψik

))
, (8)

for maps of degree 2 − k

mk : A⊗k → A. (9)

It can be shown that these products do indeed obey the

conditions (2) and thus give A the structure of an A∞ algebra.
Herbst, Lazaroiu, Lerche
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There are two extreme versions of an A∞-algebra.

The first is where all the higher products vanish:

mk = 0, k > 2.

This is a differential graded algebra (dga).

m1 is the differential and m2 is the product.

The second is a minimal model , where m1 = 0 but all higher

products can be nonzero.
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An A∞ morphism is a set of maps

fk : A⊗k → B. (10)

such that (up to signs)∑
r+s+t=n

fu(1
⊗r⊗ms⊗1⊗t) =

∑
1≤r≤n

i1+...+ir=n

mr(fi1⊗fi2⊗· · ·⊗fir),

(11)

for any n > 0 and u = n + 1 − s.
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Given a dga A, one may construct the space B = H∗(A).

Thanks to a theorem by Kadeishvili, we may define an A∞
structure on B such that

1. There is an A∞ morphism f from B to A with f1 equal to

an embedding i : B ↪→ A.

2. m1 = 0 (i.e. B is minimal).

This A∞ structure on B is unique up to A∞-isomorphisms.
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The fact that the A∞-algebra can only be identified up to some

ambiguity is unfortunate but actually inevitable given that we

are only using topological field theory methods.

In the language of topological field theory there are intrinsic

ambiguities in the definition of the correlation functions arising

from contact terms.

In the language of the effective N = 1 supersymmetric field

theory we do not know the kinetic terms and thus only know

the superpotential up to nonlinear field redefinitions.

Actually we do better than knowing W up to any nonlinear

field redefinition but we will not pursue this here.

30



The combinatorics of constructing B from A is identical to a

tree-level φ3 quantum field theory. Kontsevich and Soibelman

mk for B is given by a sum over trees with k “in” legs and 1

“out” leg.

The vertex is given by m2 of A.

The propagator H is given by “the inverse” of m1 of A. More

precisely, if p : A → B is a map such that p ◦ i = 1, then

1 − i ◦ p = m1H + Hm1.
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m3 a,b,c)( = +

a a b cb c

H
Hm2

m2 m2

m2
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The A-infinity structure in the general case is highly non-trivial

and includes interesting products between morphisms of many

gradings.

E.g. Polishchuk has analyzed derived category of an elliptic curve.

In our case, we only consider collections of objects that make a

sensible quantum field theory. (No Hom’s between nodes in

quiver.)

The effect of this is to make the A-infinity structure fairly

boring except for the products between “q = 1” morphisms.

Thus we focus only on these products from now on.
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Let us restrict attention to 9-branes, i.e., vector bundles E

covering X .

Witten showed that the correlation functions required for our

superpotential could be computed, at tree-level, by a cubic field

theory:

Holomorphic Chern–Simons theory:

S =

∫
X

Tr
(
A ∧ ∂̄A + 2

3
A ∧ A ∧ A

) ∧ Ω, (12)

where A is a 1-form valued in End(E).
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That is,

the A∞-algebra for the correlation functions is a

minimal A∞-algebra computed from a dga given by

differential forms with m1 = ∂̄ and m2 = ∧.

Note these differential forms are valued in End(E) for a single

9-brane; or Hom(E,F ) for the quiver version with several

9-branes.
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One may show that differential forms with m1 = ∂̄ and

m2 = ∧ my be replaced by:

Čech cochains with m1 = δ and m2 = ∪ or

a similar structure in D(X) given by maps between complexes.

This latter structure is an intrinsic A∞-structure in D(X)

(studied by Polishchuk for example).

It allows us to extend the computation of the superpotential

over the whole of D(X) (not just 9-branes).
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. . . d
E n−1 d

gn−1

E n d

gn

E n+1 d

gn+1

. . .

. . . d
E n−1 d

E n d
E n+1 d . . .

and

d = d ◦ g − (−1)ng ◦ d.

Thus, a d-closed map is a chain map and a d-exact map is a

chain homotopy.

The product is simply a composition of chain maps.
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Yet another presentation of the same mathematics is given by

another, more practical picture.

Let E • be a complex of locally-free sheaves representing a

given D-brane.

Now build a double complex with entries

⊕
p+q=n

Čp (U,Hom(E •,E •[q])) , (13)

with m1 and m2 from above.

This can be generalized to several branes in the obvious way.
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For example, let C ∼= P
1 and let X be the (noncompact) total

space of the bundle OC(−1) ⊕OC(−1).

The 3-brane corresponds to a point in X . An example of a

5-brane is OC .

We may vary B + iJ on this space and vary the area of C. At a

special value of B + iJ , we have a conifold.

By Π-stability arguments, the 3-brane on the conifold point

decays marginally into two 5-branes OC and OC(−1)[1]. Thus,

if we considered N coincident 3-branes at this conifold point,

we would have a U(N) × U(N) quiver gauge theory.
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To produce a local model for this case, let X be the total space

of the normal bundle OC(−1)⊕OC(−1). Thus we have bundle

map π : X → C. An affine open cover of X is then given by

two patches: U0, with coordinates (x, y1, y2); and U1, with

coordinates (w, z1, z2). The transition functions are obviously

w = x−1

z1 = xy1

z2 = xy2

(14)
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Now OC is not a locally-free sheaf on X . Define

O(1) = π∗OC(1). We then have an exact sequence

O(2)
(−y2

y1
)

(−z2
z1

)
O(1) ⊕O(1)

( y1 y2 )

( z1 z2 )
O OC , (15)

where we have given the explicit sheaf maps in both patches.

This provides the locally-free resolution of OC , and thus

OC(−1)[1] too by tensoring the resolution by O(−1) and

shifting one place to the left.
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Ext1(OC(−1)[1],OC) and Ext1(OC ,OC(−1)[1]) are both

isomorphic to C
2. Thus we have a quiver:

◦ ◦OC(−1)[1] OC

a

b

d

c
(16)
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The classes in Ext1(OC(−1)[1],OC) are represented by

elements of Č0(U,Hom(OC(−1),OC)) as follows. Using the

notation described above, let one generator of this group,

denoted a, be represented by

O(1)
(−y2

y1
)

1

O ⊕O ( y1 y2 )

−( 1 0
0 1 )

O(−1)

1

O(2)
(−y2

y1
)O(1) ⊕O(1)

( y1 y2 ) O

(17)

and b by the same thing with 1 replaced by x in the vertical

maps.
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Next, the two generators of Ext1(OC ,OC(−1)[1]) can be

represented by elements of Č1(U,Hom(OC ,OC(−1)[1]). Let c

be represented by

O(2)
(−y2

y1
)

„
0

− 1
x

«
01

O(1) ⊕O(1)
( y1 y2 )

( 1
x

0 )
01

O

O(1)
(−y2

y1
)O ⊕O ( y1 y2 ) O(−1)

(18)

and d by something similar.
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Finally, the generator of Ext3(OC(−1)[1],OC(−1)[1]) can be

represented by a 1-cochain in

Č1(U,Hom(OC(−1),OC(−1)[2])):

O(1)
(−y2

y1
)

( 1
x
)01

O ⊕O( y1 y2 )O(−1)

O(1)
(−y2

y1
)O ⊕O( y1 y2 )O(−1)

(19)
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The composition c � a gives a map

O(1)
(−y2

y1
)

„
0

− 1
x

«
01

O ⊕O( y1 y2 )

(− 1
x

0 )
01

O(−1)

O(1)
(−y2

y1
)O ⊕O( y1 y2 )O(−1)

(20)

This is δ-exact. Thus m2(c, a) = 0.
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More precisely, c � a is a Čech coboundary of the map which is

zero in patch 0 and in patch 1 given by the chain map

O(1)
(−y2

y1
)

( 0−1 )
1

O ⊕O( y1 y2 )

(−1 0 )1

O(−1)

O(1)
(−y2

y1
)O ⊕O( y1 y2 )O(−1)

(21)

The above represents H(c � a).
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Continuing this way, b � H(c � a) + H(b � c) � a is

O(1)
(−y2

y1
)

( 0
1 )

O ⊕O( y1 y2 )

(−1 0 )

O(−1)

O(2)
(−y2

y1
)O(1) ⊕O(1)

( y1 y2 ) O

(22)

When composed with d this gives the Ext3 of (19) but when

composed with c it gives zero. Thus m3(b, c, a) is Serre dual to

d.
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Denoting by A the N = 1 superfield dual to a etc., we thus

have a term in the superpotential equal to Tr(BCAD).

Checking all combinations (and being careful with signs!) one

obtains:

W = Tr(BCAD − ACBD).

in agreement with Klebanov and Witten.
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For another example, consider a 5-brane wrapping a P
1 in X

which has normal bundle OC ⊕OC(−2) but whose

deformations are obstructed.

An example of such a P
1 can be given explicitly in patches

using the transition functions

w = x−1

z1 = x2y1 + xyn
2

z2 = y2

(23)

The Picard group is one-dimensional and we denote the

corresponding twisted sheaf O(1).
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By using a locally-free resolution, OC is quasi-isomorphic to

O
„ y2
−1
x

«
O
⊕

O(1)

⊕
O(1)

0
@ 1 y2 0

−x 0 y2

−yn−1
2 −s −y1

1
A
O(1)

⊕
O(1)

⊕
O

( s y1 y2 ) O.

(24)

where s = xy1 + yn
2 .
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Define x to be the following generator of Ext1(OC ,OC) ∼= C:

O

„ 1
0
0

«

O
⊕

O(1)

⊕
O(1)

0
@ 0 1 0

0 0 1
y

n−2
2 0 0

1
A

O(1)

⊕
O(1)

⊕
O

( 0 0 1 )

O

O

O
⊕

O(1)

⊕
O(1)

O(1)

⊕
O(1)

⊕
O

O

(25)
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Now x � x is a chain homotopy, i.e., a boundary, if n ≥ 3. It is
the boundary of k:

F3

„ 0
0
0

«

F2

0
@ 0 0 0

0 0 0
y

n−3
2 0 0

1
A

F1

( 0 0 0 )

F0

F3 F2 F1 F0

(26)

But x � k + k � x yields the same map as x � x except that n is

replaced by n − 1.
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Thus the process continues iteratively.

Ultimately one recovers the superpotential

W = Xn+1

as has been derived in many other ways previously.
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Conclusion

• This computation can be, and has been, extended to other

examples.

• It is applicable to any set of B-type D-branes in any

Calabi–Yau threefold.

• It is not clear how much stamina is required for

complicated examples!

• The precise nature of the ambiguities is not fully

understood.

• It is only valid to tree-level.
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