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Physical Motivation

» strongly interacting/correlated systems

» non-perturbative definition of non-trivial QFT in
continuum

» analytic continuation of path integrals
» dynamical and non-equilibrium physics from path integrals
» uncover hidden ‘magic’ in perturbation theory

» “exact” asymptotics in QM, QFT and string theory



e what does a Minkowski path integral mean?

/ DA exp ( [A]) versus / DA e;ip (—1 S[A])
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Physical Motivation

e what does a Minkowski path integral mean?
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Mathematical Motivation

Resurgence: ‘new’ idea in mathematics (tcalle, 1950; Stokes, 1850)

resurgence = unification of perturbation theory and
non-perturbative physics

e perturbation theory generally = divergent series

e series expansion — trans-series expansion

e trans-series ‘well-defined under analytic continuation’
e perturbative and non-perturbative physics entwined

e applications: ODEs, PDEs, fluids, QM, Matrix Models, QFT,
String Theory, ...

e philosophical shift:
view semiclassical expansions as potentially exact



Trans-series

No function has yet presented itself in analysis, the
laws of whose increase, in so far as they can be
stated at all, cannot be stated, so to say, in
logarithmico-exponential terms

G. H. Hardy, Divergent Series, 1949

e deep result: “this is all we need” (J. Ecalle, 1980)
e trans-series in many physics applications:
-1

flg*) = g: i kzcm’“ g [exp (_;)] k {log <_912>]l

0 k=0 1=0

_1
e trans-monomials: g%, ¢ ¢°, In(g?): familiar in physics



Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour
at the origin. Loosely speaking, these functions
resurrect, or surge up - in a slightly different guise,
as it were - at their singularities

J. Ecalle, 1980

e new: trans-series coefficients ¢y, highly correlated
e new: analytic continuation under control
e new: exponentially improved asymptotics



Perturbation theory

e hard problem = easy problem -+ “small” correction

e perturbation theory generally — divergent series

e.g. QM ground state energy: £ =Y > ¢, (coupling)”



Perturbation theory

e hard problem = easy problem -+ “small” correction

e perturbation theory generally — divergent series
e.g. QM ground state energy: £ =Y > ¢, (coupling)”

» Zeeman: ¢, ~ (—1)" (2n)!

v

Stark: ¢, ~ (2n)!

v

cubic oscillator: ¢, ~ I'(n+ 3)

» quartic oscillator: ¢, ~ (=1)"T'(n + 3)

» periodic Sine-Gordon (Mathieu) potential: ¢, ~ n!
» double-well: ¢, ~ n!

note generic factorial growth of perturbative coefficients



but it works ...
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Perturbation theory works

QED perturbation theory:

1
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but it is divergent ...
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Perturbation theory: divergent series

Divergent series are the invention of
the devil, and it is shameful to base on
them any demonstration whatsoever ...
That most of these things [summation
of divergent series| are correct, in spite
of that, is extraordinarily surprising. 1
am trying to find a reason for this; it
1s an exceedingly interesting question.

1494V MIUNIH STIIN

N. Abel, 1802 — 1829



Perturbation theory: divergent series

Divergent series are the invention of
the devil, and it is shameful to base on NORGE /A
them any demonstration whatsoever ...
That most of these things [summation

of divergent series| are correct, in spite
of that, is extraordinarily surprising. 1
am trying to find a reason for this; it
1s an exceedingly interesting question.

THEV JITUNHH STHIN

550

N. Abel, 1802 — 1829

The series is divergent; therefore we
may be able to do something with it

O. Heaviside, 1850 — 1925




Asymptotic Series vs Convergent Series

z fixed

N-1
fx) =) en(x—w0)" + Ru(x)
n=0
convergent series:
|[Ry(z)] =0 , N—=o0o ,
asymptotic series:
[Ry(z)] < |z —zo|Y . z =@

—  “optimal truncation”:

, N fixed

truncate just before least term (z dependent!)



Asymptotic Series vs Convergent Series
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Asymptotic Series: exponential precision

optimal truncation: error term is exponentially small
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Asymptotic Series vs Convergent Series

Divergent series converge faster than convergent
series because they don’t have to converge

G. F. Carrier, 1918 — 2002




Perturbation theory

QED: fine-structure constant is small:
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Borel summation: basic idea

write n! = fooo dte T "

alternating factorially divergent series:

Emile Borel

o0

Z(—l)”n!g”:/oodte_tljgt )

n=0 0

integral convergent for all g > 0: “Borel sum” of the series



Borel Summation: basic idea
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Borel summation: basic idea

write n! = fooo dte tt"

non-alternating factorially divergent series:

n!g”—/ dte" —— 77
;) i —

pole on the Borel axis!

Emile Borel



Borel summation: basic idea

write n! = fooo dte tt"

non-alternating factorially divergent series:

n!g”—/ dte" —— 77
;) ) —

pole on the Borel axis!

= non-perturbative imaginary part

o1
+—e ¢
g

but every term in the series is real !7!

Emile Borel



Borel Summation: basic Idea

Borel = Re [Zn'x”

n=0

2.0

-0.5



Borel singularities
avoid singularities on R™: lateral Borel sums:

Sof(g) = ;/Oe OoB[f](t)e_t/gdt

go above/below the singularity: § = 0
— non-perturbative ambiguity: +Im[Syf(g)]

challenge: use physical input to resolve ambiguity



Instability and Divergence of Perturbation Theory

2 4
Bender/Wu, 1969 V(JT) = % + )\%
\ \
4
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Borel Summation and Dispersion Relations

cubic oscillator: V = 22 + \ 23

A. Vainshtein, 1964

> 1 (B ImE(z)
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Z 0 <ﬂ- /0 z Zn-i—l )



Borel Summation and Dispersion Relations

cubic oscillator: V = 22 + \ 23

A. Vainshtein, 1964
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Borel summation in practice (physical applications)

direct quantitative correspondence between:

rate of growth <+ Borel poles <> non-perturbative exponent

non-alternating factorial growth: ¢, ~ " T'(yn + 0)

1\
positive Borel singularity: te = (5)
g

6/v 1/y
. w1 1
non-perturbative exponent: +i— | — exp | — B—
g



Divergence of perturbation theory

an important part of the story ...

The majority of nontrivial theories are seemingly
unstable at some phase of the coupling constant, which
leads to the asymptotic nature of the perturbative series

A. Vainshtein (1964)



recall: divergence of perturbation theory in QM
e.g. ground state energy: E =" ¢, (coupling)”

e Zeeman: ¢, ~ (—1)"(2n)!

e Stark: ¢, ~ (2n)!

e quartic oscillator: ¢, ~ (—=1)"T'(n + 3)
e cubic oscillator: ¢, ~ I'(n + 3)

e periodic Sine-Gordon potential: ¢, ~ n!

e double-well: ¢, ~ n!



recall: divergence of perturbation theory in QM

e.g. ground state energy: E =" ¢, (coupling)”

e Zeeman: ¢, ~ (—1)"(2n)! stable

e Stark: ¢, ~ (2n)! unstable
e quartic oscillator: ¢, ~ (—=1)"T'(n + 3) stable

e cubic oscillator: ¢, ~ I'(n + 3) unstable
e periodic Sine-Gordon potential: ¢, ~ n! stable 777

e double-well: ¢, ~ n! stable 777



Bogomolny /Zinn-Justin mechanism in QM

N —_——
P —
P —_

e degenerate vacua: double-well, Sine-Gordon, ...

_S5
splitting of levels: a real one-instanton effect: AE ~ e 9*



Bogomolny /Zinn-Justin mechanism in QM

P —
P —_

e degenerate vacua: double-well, Sine-Gordon, ...

_S5
splitting of levels: a real one-instanton effect: AE ~ e 9*

surprise: pert. theory non-Borel summable: ¢, ~ 7(275!)”

» stable systems

» ambiguous imaginary part

_2s
» +ie 9%, a 2-instanton effect



Bogomolny /Zinn-Justin mechanism in QM

P —
P —_

e degenerate vacua: double-well, Sine-Gordon, ...

1. perturbation theory non-Borel summable:
ill-defined /incomplete

2. instanton gas picture ill-defined /incomplete:
7 and 7 attract

e regularize both by analytic continuation of coupling

= ambiguous, imaginary non-perturbative terms cancel !



Decoding of Trans-series

1= 35 3o oo (3] o ()]

n=0 k=0 ¢g=0

e perturbative fluctuations about vacuum: Zn —0 Cn,0,0 g>"
e divergent (non-Borel-summable): ¢, 0,0 ~ (25)

2
= ambiguous imaginary non-pert energy ~ =i o e 25/9

e but cp21 = —a: BZJ cancellation !



Decoding of Trans-series

1= 35 3o oo (3] o ()]

n=0 k=0 ¢g=0

e perturbative fluctuations about vacuum: Zn —0 €n0,09 2n
e divergent (non-Borel-summable): ¢, 0,0 ~ (25)

2
= ambiguous imaginary non-pert energy ~ =i o e 25/9

e but cp21 = —a: BZJ cancellation !
pert flucs about instanton: e=S/9* (1 +a1g® + asg* + .. )

divergent:

n!
Qp, ~ s

2
e 3-instanton: e—35/¢° {g (ln (—g%)) +b1n (—%) + C}

(a Inn +b) = +ime 35/9° (aln —I—b)

g



Decoding of Trans-series

1= 35 3o oo (3] o ()]

n=0 k=0 ¢g=0

e perturbative fluctuations about vacuum: Zn —0 €n0,09 2n
e divergent (non-Borel-summable): ¢, 0,0 ~ (25)

2
= ambiguous imaginary non-pert energy ~ =i o e 25/9

e but cp21 = —a: BZJ cancellation !
pert flucs about instanton: e=S/9* (1 +a1g® + asg* + .. )

divergent:
ap ~ (22!)” (a Inn +b) = +ime 35/9° (a In % + b)

2
e 3-instanton: e—35/¢° {g (ln (—g%)) +b1n (—g—2> + c}

resurgence: ad infinitum, also sub-leading large-order terms



Towards Resurgence in QFT

e resurgence = analytic continuation of trans-series

o effective actions, partition functions, ..., have natural integral
representations with resurgent asymptotic expansions

e analytic continuation of external parameters: temperature,
chemical potential, external fields, ...

e e.g., magnetic <> electric; de Sitter <» anti de Sitter, ...
e matrix models, large N, strings, ... (Marifio, Schiappa, ...)

e soluble QFT: Chern-Simons, ABJM, — matrix integrals

e asymptotically free QFT 7



Divergence of perturbation theory in QFT

e C. A. Hurst (1952):
¢* perturbation theory is divergent:

(i) factorial growth of number of diagrams
(ii) explicit lower bounds on diagrams

.“
l v

If it be granted that the perturbation expansion does not
lead to a convergent series in the coupling constant for
all theories which can be renormalized, at least, then a
reconciliation is needed between this and the excellent
agreement found in electrodynamics between
experimental results and low-order calculations. It is
suggested that this agreement is due to the fact that the
S-matriz expansion is to be interpreted as an
asymptotic expansion in the fine-structure constant ...



Dyson’s argument (QED)

e I'. J. Dyson (1952):
physical argument for divergence of QED
perturbation theory

F(eQ) =co+ o€’ +cae + ...

Thus [for e? < 0] every physical state is unstable
against the spontaneous creation of large numbers of
particles. Further, a system once in a pathological state
will not remain steady; there will be a rapid creation of
more and more particles, an explosive disintegration of
the vacuum by spontaneous polarization.

e suggests perturbative expansion cannot be convergent



Euler-Heisenberg Effective Action (1935) review: hep-th/0406216

Ap-Aq~h§

Heisenbergsche |
Unschirferelation

1901 - 1976

e 1-loop QED effective action in uniform emag field

e e.g., constant B field:
2p2 oo 2
e‘B ds 1 s m“s
S=-— — ths — — — = -
872 /0 52 <CO T 3> exp[ eB]

e?B? & Bopt4a 2eB 22
27?2 2n+4)(2n+ 3)(2n + 2)

S:_ n:O( m2


http://inspirehep.net/record/653094?ln=en

Euler-Heisenberg Effective Action and Schwinger Effect

B field: QFT analogue of Zeeman effect
FE field: QFT analogue of Stark effect

B? - —FE?: series becomes non-alternating

. 22 5
Borel summation = Im S = 6871:4; S 1%2 exp [_kann}



Euler-Heisenberg Effective Action and Schwinger Effect

B field: QFT analogue of Zeeman effect
E field: QFT analogue of Stark effect

B? — —E?: series becomes non-alternating

873

eE

. 22 2
Borel summation = Im S = & 3% 22 €Xp [—km ’T}

Schwinger effect:

Im S — physical pair production rate

e suggests Euler-Heisenberg series must be divergent



de Sitter/ anti de Sitter effective actions  (pas & G, hep-th/os07168)

e explicit expressions (multiple gamma functions)
2\ 4/2 n
m K
~ e § : (AdSq) |

m2 d/2 K\"
Ls,(K) ~ <47T> Za%dsd) <mg>

e changing sign of curvature: a5 = (—1)”a§Lde)

e odd dimensions: convergent

e even dimensions: divergent

al

AdSy) MNQ(_U”M
" n(2n + d)

(27T)2n+d

e pair production in dSy with d even


http://inspirehep.net/record/722246?ln=en

Resurgence and Analytic Continuation

another view of resurgence:

resurgence can be viewed as a method for making formal
asymptotic expansions consistent with global analytic
continuation properties



Asymptotic Expansions & Analytic Continuation

Stirling expansion for ¢ (x) = % InT'(z) is divergent

1 1 1 1 174611
Y(1+2)~Inz+ —

e functional relation: ¥(1 + z) = ¥(z) +

N =

formal series = Im(1+dy) ~ _i +z

e reflection formula: (1 + z) — (1 — z) = L — 7 cot(r 2)

1 o0
=  Imy(1 +iy) ~ Ty + g —|—7rZe_27rky
k=1

“raw” asymptotics inconsistent with analytic continuation

9, 122 T 1204 2526 7 T 6600220



QFT: Renormalons

QM: divergence of perturbation theory due to factorial growth
of number of Feynman diagrams

QFT: new physical effects occur, due to running of couplings
with momentum

e faster source of divergence: ‘renormalons”

e both positive and negative Borel poles



IR Renormalon Puzzle in Asymptotically Free QF T

2S5

perturbation theory: — +ie fos?
28
instantons on R? or R*: — +ie o2

instanton / anti-instanton poles

MM
/N

UV renormalon poles IR renormalon poles

appears that BZJ cancellation cannot occur

asymptotically free theories remain inconsistent

’t Hooft, 1980; David, 1981



IR Renormalon Puzzle in Asymptotically Free QF T

resolution: there is another problem with the non-perturbative
instanton gas analysis (Argyres, Unsal 1206.1890; GD, Unsal, 1210.2423)

e scale modulus of instantons

e spatial compactification and principle of continuity

: N-1 .
* 2 dim. CPT=" model: instanton / anti-instanton poles

MM
/N

UV renormalon poles IR renormalon poles

neutral bion poles

cancellation occurs ! (GD, Unsal, 1210.2423, 1210.3646)


http://arxiv.org/abs/arXiv:1206.1890
http://inspirehep.net/record/1189994?ln=en
http://inspirehep.net/record/1189994?ln=en
http://inspirehep.net/record/1189994?ln=en

The Bigger Picture

Q: should we expect resurgent behavior in QM and QFT ?
QM uniform WKB =

(i) trans-series structure is generic
(ii) all multi-instanton effects encoded in perturbation theory

(GD, Unsal, 1306.4405, 1401.5202)

Q: what is behind this resurgent structure ?

e basic property of all-orders steepest descents integrals

Q: could this extend to (path) functional integrals ?


http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en

Uniform WKB and Resurgent Trans-Series for Eigenvalues

(GD, Unsal, 1306.4405, 1401.5202)

( ) di 9
Y =FE — sU(y) + V(y)v(y) = 9" E¢(y)

W

e weak coupling: degenerate harmonic classical vacua

f7¢+

e non-perturbative effects: ¢? < h = exp (—g%)

e approximately harmonic

= uniform WKB with parabolic cylinder functions


http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en

Connecting Perturbative and Non-Perturbative Sector

Uniform WKB = trans-series form for energy eigenvalues arises
from the (resurgent) analytic continuation properties of the
parabolic cylinder functions

generic and universal
Zinn-Justin/Jentschura: generate entire trans-series from

(i) perturbative expansion E = E(N, g?)
(ii) single-instanton fluctuation function F (N, g?)
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)


http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en

Connecting Perturbative and Non-Perturbative Sector

Uniform WKB = trans-series form for energy eigenvalues arises
from the (resurgent) analytic continuation properties of the
parabolic cylinder functions

generic and universal
Zinn-Justin/Jentschura: generate entire trans-series from

(i) perturbative expansion E = E(N, g?)
(ii) single-instanton fluctuation function F (N, g?)
(iii) rule connecting neighbouring vacua (parity, Bloch, ...)

in fact ... (aD, Unsal, 1306.4405, 1401.5202)
9 dg®> (9E(N, g% (N+3) ¢°
g 9 3) 9
F (N, 2) = S - — -1+ —=

implication: perturbation theory encodes everything !


http://inspirehep.net/record/1239186?ln=en
http://inspirehep.net/record/1278369?ln=en

Connecting Perturbative and Non-Perturbative Sector

e.g. double-well potential: B = N + %
2 2 2, 1 4 3 19
E(N,g*) = B-g°(3B +1 —-g (178 +ZB

375 459 131

6 4 2

—g0 ([ ZEB SR ) —
g<2 + +32>

e non-perturbative function (F ~ (...) exp[—A4/2]):

1 19 1538
A(Aag2)::394—92<17324-12>-%g4<12533+->
17815 23405 22709
6 4 2
B B2y =2
( 2 0t 576 )

e simple relation:

OF ) , 0A
= 9B — 225
oB % < g 092>



Connecting Perturbative and Non-Perturbative Sector

all orders of multi-instanton trans-series are encoded in
perturbation theory of fluctuations about perturbative vacuum

why ? turn to path integrals ....



Analytic Continuation of Path Integrals

The shortest path between two truths in
the real domain passes through the
complex domain

Jacques Hadamard, 1865 - 1963




All-Orders Steepest Descents: Darboux Theorem

e all-orders steepest descents for contour integrals:

hyperasymptotics (Berry/Howls 1991, Howls 1992)
1
1M (g%) = dze el 1 e o In ) (9°)
Cn 1/g*

o 7T(1) (¢%): beyond the usual Gaussian approximation

e asymptotic expansion of fluctuations about the saddle n:

7™M (g Z T g2



All-Orders Steepest Descents: Darboux Theorem

r

7o _ (= ! 3 (=1)7mm

e universal resurgent relation between different saddles:

1 ° dv e ? F
T(n) 2y _1)Ynm / - T(m) nm
(97) 21 (=1) Jo v 1—g%v/(Fum) v

m

e exact resurgent relation between fluctuations about n'™® saddle
and about neighboring saddles m

Fom (m) (an)2 (m)
(r—1) I (r—1)(r—-2) 2

T +

27 (Frm)"

e universal factorial divergence of fluctuations (Darboux)

e fluctuations about different saddles explicitly related !



All-Orders Steepest Descents: Darboux Theorem

d = 0 partition function for periodic potential V'(z) = sin?(z)
0

two saddle points: 29 = 0 and z; = 7.

in. saddle
vacuum $_
17




All-Orders Steepest Descents: Darboux Theorem

e large order behavior about saddle zg:

1\2
7O _ I(r+3)
r JriT(r+1)
9 5
128

e low order coefficients about saddle z1:

. 1 9 75

e fluctuations about the two saddles are explicitly related

(r—1! _ i 32 _
<1 D) oD —2 r-Dr-20-3)

_.I_



Resurgence in Path Integrals: “Functional Darboux Theorem”

could something like this work for path integrals?

“functional Darboux theorem” ?
e multi-dimensional case is already non-trivial and interesting

Pham (1965); Delabaere/Howls (2002)

e Picard-Lefschetz theory

e do a computation to see what happens ...



Resurgence in Path Integrals

e periodic potential: V(x) = g% sin?(g x)

e vacuum saddle point

5 1 13 1
ep~nl [ l—— = — — ———— —
2 n 8 nn-1)

e instanton/anti-instanton saddle point:

-2-1 5 o 13 4
ImE ~ 2° |[1——-9g°— — g —...
m Te 29 ( 59 g9 )



Resurgence in Path Integrals

e periodic potential: V(x) =

e vacuum saddle point

5 1
cnwn!<1— - —

2 n

1

1 sin?(g )

13 1

8

n(n—1)

e instanton/anti-instanton saddle point:

—2-1 5 13
ImE ~me "2 (1—2 - g? 3
e double-well potential: V(z) = 2?(1 — gz)?
e vacuum saddle point
1277 1

cnw3nn!<l—53 R,

e instanton/anti-instanton saddle point:
53

21
ImE~7me "6 (1 ——.¢g"— —— -

6

7232 n(n-1)

, 1277

=
)

=
e

1



Analytic Continuation of Path Integrals: Lefschetz Thimbles

7 = /deS(x)

e critical points (saddle points): 95/0z =0
e steepest descent contour: Im S(z) = constant

e contour flow-time parameter t:

d 1(8S, 0S. d 1/0S . 0S.
e flow along a steepest decent path:

.08 d d aS|?

=0 :>@Im5(z)—0 , aReS(z)— % 0

e monotonic in real part

Z — e*iSimag(I) / dZ efsreal(z)
r



Analytic Continuation of Path Integrals: Lefschetz Thimbles

/DA L Z Ny ¢ 57 SmaglAkl [ g o= Seearl]
thimbles k T

Lefschetz thimble = “functional steepest descents contour”

remaining path integral has real measure:
(i) Monte Carlo

(ii) semiclassical expansion

(iii) exact resurgent analysis

resurgence: asymptotic expansions about different saddles are
closely related

requires a deeper understanding of complex configurations and
analytic continuation of path integrals ...

Stokes phenomenon: intersection numbers N}, can change with
phase of parameters



Non-perturbative Physics Without Instantons

e.g, 2d Principal Chlral Model: (Cherman, Dorigoni, GD, Unsal,

1308.0127)
§=gy [ PrwoUUT . UeSUW)

e non-Borel-summable pert. theory: IR renomalons

e but, the theory has no instantons !


http://inspirehep.net/record/1246022?ln=en

Non-perturbative Physics Without Instantons

e.g, 2d Principal Chlral Model: (Cherman, Dorigoni, GD, Unsal,

1308.0127)
§=gy [ PrwoUUT . UeSUW)

e non-Borel-summable pert. theory: IR renomalons
e but, the theory has no instantons !
resolution: non-BPS saddle point solutions to 2nd-order
classical Euclidean equations of motion: “unitons”

9 (019,0) =0
e have negative fluctuation modes: saddles, not minima

e fractionalize on cylinder — BZJ cancellation


http://inspirehep.net/record/1246022?ln=en

Non-perturbative Physics Without Instantons

CPN-1 PCM, Yang-Mills, ... all have finite action non-BPS

SOlutiOIlS (Din/Zakrzewski 1980; Uhlenbeck 1985; Sibner/Sibner/Uhlenbeck 1989)
e “unstable”. negative modes of fluctuation operator
e what do these mean ?

resurgence: ambiguous imaginary non-perturbative terms should
cancel ambiguous imaginary terms coming from lateral Borel
sums of perturbation theory

1 _1
/DAe 051 Z ¢ o7 SMAmaa o (fluctuations) x (qzm)
all saddles



(Dabrowski, GD, arXiv:1306.0921)

Charga Density of wy: (Qa) = 2)

T

Action Density of wy): (S) =4) Charge Density of wy): (@, = 0)
I T
— n

Action Density of ey (St = 2) Charge Density of w! (@ = =2} < 1PN G4



http://inspirehep.net/record/1237116?ln=en

Conclusions

e perturbation theory is generically divergent

e resurgence systematically unifies perturbation theory and
non-perturbative physics into a trans-series

e there is extra ‘magic’ in perturbation theory

e IR renormalon puzzle in asymptotically free QFT
e basic property of steepest descents expansions

e moral: consider all saddles, including non-BPS

e resurgence required for analytic continuation



Open Problems

natural path integral construction

analytic continuation of path integrals

physics of QFT saddles/thimbles ?

renormalization group flow 7

strong- & weak-coupling expansions: dualities ?
e operator product expansion (OPE) ?

e SUSY and extended SUSY ?

e localization 7





