problem

Farmer Palmer, lying stealthily on the (flat) ground, shoots at a trespasser who has climbed to the top of a tree of height h at distance L away.
If bullets leave his gun with speed v then find an equation determining the required angle of projection α. Show that $\tan \alpha=v^{2} / g L$ for maximum range, and that then the bullets' initial velocity bisects the angle between the vertical and the straight line joining gun and trespasser.

diagram

derivation

integrating N 2 gives

$$
x(t)=v t \cos \alpha \quad y(t)=v t \sin \alpha-g t^{2} / 2
$$

when putting

$$
x(T)=L \quad \text { and } \quad y(T)=h
$$

and eliminating time of flight T - with the use of

$$
\tan =\sin / \cos \quad \text { and } \quad \sin ^{2}+\cos ^{2}=1
$$

- leads to the key equation.

key equation

$$
\begin{aligned}
h=-\frac{g L^{2}}{2 v^{2}}(1 & \left.+\tan ^{2} \alpha\right)+L \tan \alpha \\
& - \text { which is quadratic for } \tan \alpha .
\end{aligned}
$$

maximum range

in range there are two real solutions for $\tan \alpha$ and out of range the solutions are complex - so at maximum range they coincide - when

$$
\tan \alpha=-\frac{L}{2\left(-g L^{2} / 2 v^{2}\right)}=\frac{v^{2}}{g L}
$$

- remembering that when $a x^{2}+b x+c=0$ has coincident roots they are given by $x=-b / 2 a$.

angles

let β be the angle between the ground and the straight line joining gun and trespasser - then $\tan \beta=h / L$, which the key equation gives as

$$
\tan \beta=\frac{h}{L}=-\frac{g L}{2 v^{2}}\left(1+\tan ^{2} \alpha\right)+\tan \alpha
$$

and where at maximum range we have

$$
g L / v^{2}=1 / \tan \alpha
$$

- hence

$$
\tan \beta=\frac{\tan ^{2} \alpha-1}{2 \tan \alpha}=-\cot 2 \alpha
$$

and so $\beta=2 \alpha-\pi / 2$ or

$$
\pi / 2-\alpha=\alpha-\beta
$$

as required

... and finally

why does angle α at maximum range depend on horizontal distance L and not on vertical height h ?

references

http://en.wikipedia.org/wiki/Farmer_Palmer

RC Johnson Maths Dept February 28, 2007

