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Abstract

The Euclidean Steiner problem aims to find the tree of minimal length spanning a set of fixed points
in the Euclidean plane while allowing the addition of extra (Steiner) points. The Euclidean Steiner
tree problem is N P-hard which means there is currently no polytime algorithm for solving it. This

report introduces the Euclidean Steiner tree problem and two classes of algorithms which are used to

solve it: exact algorithms and heuristics.
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Chapter 1

Introduction

1.1 Context and motivation

Suppose somebody wanted to build a path in Durham connecting up all the colleges as cheaply as
possible. They would want to make the path as short as possible; this is an example of the Fuclidean
Steiner problem. This problem is used in the design of many everyday structures, from roads to oil
pipelines.

The aim of the problem is to connect a number of points in the Euclidean plane while allowing
the addition of extra points to minimise the total length. This is an easy problem to express and
understand, but turns out to be an extremely hard problem to solve.

Whilst doing an internship at a power company from July to September 2009, I did research into
the optimization algorithms which are used in the design of gas turbine engines. It was here that
I developed a specific interest in problems of optimization and the algorithms which can be used to
solve them. It was this that lead me to chose to do this project.

The Euclidean Steiner problem is a particularly interesting optimization problem to study as it
draws on ideas from graph theory, computational complexity and geometry as well as optimization.
All these different themes will be explored in this report which focuses firstly on two important areas
of study related to the Euclidean Steiner problem, followed by what the Euclidean Steiner problem is
and finally some different ways of solving it.

1.2 Contents

The main body of this report is divided as follows. The first two chapters are introductions to two areas
of study which are important when considering the Euclidean Steiner problem. Chapter 2 provides
an introduction to graph theory and Chapter 3 provides an introduction to computational complexity.
Both of these chapters stand pretty much alone but various ideas covered in them will be drawn on in
the later three chapters. Chapter 4 focuses on explaining in detail what the Euclidean Steiner problem
is and provides a brief history of the study of the problem from its first posed form until the present
day. Chapters 5 and 6 focus on ways to solve the Euclidean Steiner problem. Chapter 5 discusses exact
algorithms used to solve the problem and Chapter 6 discusses heuristics used to solve the problem.
The final chapter of this report, Chapter 7, provides a summary of the main points raised.

The main references used will be noted at the beginning of each chapter and any other references
used throughout the report will be noted when appropriate. The bibliography at the end of the report
provides the details of each of the references used.



Chapter 2

Graph Theory

The Fuclidean Steiner problem is a problem of connecting points in Euclidean space so that the total
length of connecting lines is minimum. In order to formally introduce and discuss this problem, it is
necessary to have a basic understanding of graph theory which is what this chapter provides. Some of
the notation and equations which are used here will be refered to throughout the rest of the report,
however much of the material is to provide consolidatory understanding of graph theory and as such
this chapter generally stands alone.

This chapter will introduce the area of graph theory starting with basic notation and definitions
including edges and vertices, paths and circuits and trees. It will then move on to looking at a well
know graph theory problem, the minimum spanning tree problem, which is closely related to the Steiner
problem. Two algorithms for solving the minimum spanning tree problem will be discussed, Prim’s
algorithm and Kruskal’s algorithm. Finally, as this report focuses on the Steiner problem in Euclidean
space, the concepts of Euclidean space and Euclidean graph theory will be formally introduced.

The main references used for this chapter are [4, 12, 5].

2.1 Vertices and Edges

A graph G = (V, E) is a structure consisting of a set of vertices V.= {v1, v, ...., }, and a set of edges
E = {ej,e9,....,} where each edge connects a pair of vertices. Unless otherwise stated V and E are
assumed to be finite and G is called finite. Another term for a graph defined in this way is a network;
we will use these terms interchangeably.

Figure 2.1: Simple Graph

In Figure 2.1 we have V = {v,v2,v3,v4,v5,v6} and E = {e1, 2, €3, €4, €5, €6, e7}. The edge e5 is
incident to the vertices v4 and vs, meaning it connects them. Vertices v4 and vs are called endpoints
of the edge e5. Both endpoints of eg are the same (v3) so eg is called a self-loop. Edges e; and e; are
called parallel because both of their endpoints are the same.



Figure 2.2: Paths

The degree of a vertex is the number of times it is used as the endpoint of an edge. We denote
degree of a vertex v by d(v). A self-loop uses its endpoint twice. In Figure 2.1, d(vy) = d(v2) = 2,
d(vg) = 4, d(vs) = 5 and d(vs) = 1. A vertex which has a degree of zero is called isolated. wvg is
isolated as d(vg) = 0.

For a graph G(V, E), |E| and |V| denote the number of edges and the number of vertices respec-
tively. The number of edges in a graph is equal to the sum of the degree of each vertex divided by
two, |E| = =),

2.2 Paths and Circuits

If edge e has vertices v and v as endpoints we say e connects v and v and that u and v are adjacent.
A path is a sequence of edges eq, es, ..., e, such that:

1. e; and e; 11 have a common endpoint

2. if e; is not a self-loop and is not the first or last edge then it shares one of its endpoints with
e;—1 and the other with e;41.

Informally, what this means is that if you traced the edges of a graph with a pencil, a path is any
sequence of movements you can make without taking the pencil off the paper at any point. Considering
Figure 2.1; the sequence es, e1, e7, eo is a path as is the sequence ey, e3, eg, e3. However the sequence
es, €3, g is not a path as there is no common endpoint of the edges e5 and eg.

A circuit is a path whose start and end vertices are the same. For example es, e4, e3 would be a
circuit starting and finishing at vertex vs. A path is simple if no vertex appears on it more than once.
A circuit is simple if no vertex apart from the start/finish vertex appears on it more than once, and
the start/finish vertex does not appear anywhere else in the circuit.

If for every two vertices in a graph (u,v) there is a path from u to v then the graph is said to be
connected; Figure 2.2 shows a connected graph. Figure 2.1 does not show a connected graph as the
isolated vertex vg has no path connecting it to any of the other vertices.

2.3 Trees

Let G(V, E) be a graph with a set of vertices V' and a set of edges E. We say G is circuit-free if there
are no simple circuits in G. G is called a tree if it is both:

1. Connected

2. Circuit-free



Figure 2.3: Tree

Figure 2.3 shows a graph which is both connected and circuit-free and hence is a tree. Figure
2.1 shows a graph which is neither connected nor circuit-free and Figure 2.2 shows a graph which is
connected but not circuit-free, so neither of these graphs are trees.

A vertex whose degree is one is called a leaf. In Figure 2.3, vertices vy, va, v3, v5 are all leaves.

Theorem. 2.1. The following four conditions are equivalent:
1. G is a tree.
2. G 1is circuit free but if any new edge is added to G a circuit is formed.
3. G contains no self-loops and for every two vertices there is a unique path connecting them.
4. G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.
Proof. A thorough proof of this theorem is given in [4]. O
Theorem. 2.2. Let G(V, E) be a finite graph and n = |V|. The following are equilvalent:
1. G is a tree
2. G 1is circuit free and has n — 1 edges
3. G is connected and has n — 1 edges
Proof. A thorough proof of this theorem is given in [4]. O

Corollary. 2.1. A finite tree, with more than one vertex has at least two leaves.

2.4 The Minimum Spanning Tree Problem

2.4.1 Subgraphs

A graph G'(V', E') is called a subgraph of a graph G(V, E) if V' CV and E' C E. Arbitrary subsets
of edges and vertices taken from G may not result in a subgraph because the subsets together may
not form a graph. Consider the subsets V' = {v1,v2,v3,v4} and E' = {e1,e2,e4} taken from the
graph shown in Figure 2.2. As Figure 2.4(a) shows, these do from a graph. However the subsets

V" ={v1,v4} and E” = {e1, e2,e4} taken from the same graph do not form a graph as can be seen in
Figure 2.4(b).



U1 U1

€1 €2 €1 €2

U3 V4 V4

Figure 2.4: Subsets and Subgraphs

2.4.2 Weighted Graphs

The length of an edge, [(e), is a number specified to it representing the distance travelled between the
two vertices it connects. A graph which has a length specified to each of its edges is called weighted.
Figure 2.5 shows the graph from Figure 2.1 whose edges have now been assigned lengths. If two
vertices are not connected then it is as if there is edge of infinite length between them. If there is
an isolated vertex, as there is in the graph shown in Figure 2.5, then this is effectively like having a
length of infinity between this vertex and every other vertex in the graph.

Figure 2.5: Weighted Graph

2.4.3 The Minimum Spanning Tree Problem

If G(V, E) is a finite connected graph and each edge has a known length, [(e) > 0, then an interesting
problem is to: Find a connected subgraph, G'(V', E"), for which the sum of the lengths of the edges
Y ecrr l(e) is a minimum. The resulting graph is always a tree because G’ must be connected and as
the sum of the edges is minimum, no edges can be removed without resulting in G’ being disconnected.
A subgraph of G(V, E) which contains all the vertices of G, G'(V, E'), and is a tree, is called a spanning
tree.

If G(V, E) is a finite connected graph and each edge has a known length , I(e) > 0, the minimum
spanning tree problem is: Find the spanning tree, G'(V, E’), for which the sum of the lengths
of the edges ) .5/ [(e) is a minimum.

2.4.4 Two Algorithms: Prim’s and Kruskal’s

As with many problems in graph theory, the best way to solve the minimum spanning tree problem
is to use an algorithm. The first algorithm used to solve this problem was Boruvka’s algorithm
in 1926. The two most common algorithms used to solve this problem today are Prim’s algorithm



and Kruskal’s algorithm which are both Greedy algorithms. Greedy algorithm’s are algorithms that
make a locally optimal choice at each stage, meaning the best choice at that particular time.

Prim’s algorithm works by starting at a vertex v and then growing a tree, T', from v. At each stage,
the shortest edge is added to 1" which has exactly one endpoint already in T'. Kruskal’s algorithm
considers the lengths of all the edges first. Then at each stage, the shortest edge is added to T', unless
adding it creates a cycle.

Algorithm. 2.1 (Prim’s). Let G(V, E) be a graph with V = {vi,va,...,vn}. Let l(vs,v;) be the length
of the edge e, connecting vertices v; and vj, if there exists an edge between them and infinity otherwise.
Let t be the starting vertex, T' be the set of edges currently added to the tree, U be the set of vertices
currently an endpoint of one of the edges in T and u and v be vertices such that w € U and v € V\U.

1. Lett = vy, T start as the empty set T « 0, U start as the set U «— {v1}

Let l(t,u) = min{i(t,v)} where v € V\U

Let T' become the union of T and the edge e corresponding to length l(t,u), T «— T |J{e}
Let U become the union of U and the vertex u, U «— U |J{u}

IfU =V, STOP

For everyv e V\ U, l(t,v) < min{l(¢,v),(u,v)}

NS G e e

Go to Step 2.

The steps of Prim’s algorithm working on the weighted graph G from Figure 2.5 (after removing
the isolated vertex, as G must be connected) are shown in Figure 2.6. Firstly, clearly neither the self-
loop, nor the longer parallel edge will be part of the minimum spanning tree so they can be removed.
Then, using Prim’s algorithm starting from v, the edges will be added in the order shown in Figure
2.6.

U1 U1 U1

. [ 2
1 1
8
3 6
. 1 )
V1
®
-~ 8 1
3 6
. 1 i

Figure 2.6: Prim’s Algorithm



Algorithm. 2.2 (Kruskal’s). Let G(V,E) be a graph with V. = {v1,va,...,v,}. Let l(vs,v;) be the
length of the edge e, connecting vertices v; and vj, if there exists an edge between them and infinity
otherwise. Let T be the set of edges currently added to the tree and U be the set of vertices currently
an endpoint of one of the edges in T.

1. Let T start as the empty set T « ()

2. Select edge e corresponding to the length l(e) = min{l(u;,v;)} not in T such that T'|J{e} does
not contain any cycles.

3. IfU =V, STOP
4. Go to Step 2.

The steps of Kruskal’s algorithm working on the same weighted graph G used for the Prim’s
algorithm example are shown in Figure 2.7. The edges are added in order of minimum weight without
a cycle being formed. The difference between this example and the example using Prim’s algorithm is
that with Kruskal’s algorithm the bottom edge of length 1 is added before the edge of length 3, however
with Prim’s algorithm it was the other way around because the tree had to be built up starting from
vertex vy. With Kruskal’s algorithm, when there are two edges of the same length as we have here
with two edges of length 1, if both edges are allowed to be added to the graph there is no distinction
between which one should be added first. Hence the order in which we add the two edges of length 1
in this case is just a matter of choice.

(% :
: [
1 1
8 8
3 0 3 6
. 1 ) ' 1 |
V1
®
- 8 1
3 0]

Figure 2.7: Kruskal’s Algorithm

A proof of correctness for both Prim’s and Kruskal’s algorithms is given in [14].

2.4.5 Cayley’s Theorem

For a set of vertices, V' = {vy,va,...,v,}, there are a number of different spanning trees which can
connect the n vertices. Figure 2.8 shows the 3 different spanning trees which are possible for n = 3
vertices.

As n increases so does the number of possible spanning trees as shown in Table 2.1. Cayley’s
Theorem defines the relationship between the number of distinct vertices n and the number of possible
spanning trees.



Theorem. 2.3 (Cayley’s). The number of spanning trees for n distinct vertices is n" 2.

Proof. Proof given in [4]. O

U1 U1 U1

V9 (OR} () V3 (%) V3

Figure 2.8: 3 Possible Trees for n=3

n | No. Spanning Trees
2 1

3 3

4 16

Table 2.1: How number of spanning trees increases with n

2.5 Euclidean Graph Theory

2.5.1 Euclidean Distance

The Fuclidean distance between points z and y in FEuclidean space is the length of the straight line
joining them. If z = (x1,x9,....,x,) and y = (y1,¥2, ..., Yn), then the Euclidean distance between z
and y is given by (2.1).

d(z,y) =V (x1 —y1)? + (@2 — 12)2 + .. + (B0 — Yn)?2 = (2.1)

In this report we shall only consider Euclidean distances where n = 2 and the distance is the
distance between two points in the plane given by d(z,y) = \/(z1 — y1)2 + (22 — y2)2.

Another useful bit of notation to define is |xy|, which shall be used to mean /(z —y)?, the
Euclidean distance between x and y.

2.5.2 EFEuclidean Graphs

A FBuclidean graph is a graph where the vertices are points in the Euclidean plane and the lengths of
the edges between vertices are the Euclidean distances between the points.

Figure 2.9 shows the Euclidean plane with 7 vertices. v; = (2,2), v2 = (1,6), v = (2,8),
vy = (6,7), v5 = (10,8), vg = (7,4), v7 = (9,2). The lengths of the edges between these vertices
are the Euclidean distances. Therefore, for example, the length of the edge between v; and wvo is

d((2,2),(1,6)) = /(2 - 1)+ (2 - 6)2 = VIT.

10
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Figure 2.9: Euclidean Graph

2.5.3 The Euclidean Minimum Spanning Tree Problem

A Fuclidean spanning tree is a spanning tree of a Euclidean graph, hence it is a circuit-free graph con-
necting n points in the Euclidean plane. The minimum spanning tree problem becomes the Fuclidean
minimum spanning tree problem and is: Find the Euclidean spanning tree for which the sum
of the Euclidean distances between n points is a minimum.

The Euclidean minimum spanning tree problem can be solved just like the minimum spanning tree
problem using either Prim’s or Kruskal’s algorithm. The Fuclidean minimum spanning tree for the
graph given in Figure 2.9 is shown in Figure 2.10. Using Kruskal’s algorithm, the order in which the
edges where added is: vou3, UgUT, V4VG, V102, V3U4, V4U5.

Y

:L‘/

Figure 2.10: Euclidean Minimum Spanning Tree

2.6 Summary

This chapter was to consolidate the readers understanding of graph theory, focusing particulary on
areas which are useful for studying the Euclidean Steiner problem.

We started with some basic notation and definitions including: edges and vertices, paths and
circuits and trees. We then looked at the minimum spanning tree problem, a graph theory problem
which is closely linked the Steiner problem. We discussed two algorithms for solving this problem,
Prim’s algorithm and Kruskal’s algorithm and an example of the workings of both was shown. Finally
the concepts of Euclidean space and Euclidean graph theory were introduced, including an example
of the minimum spanning tree problem in Euclidean space.

The next chapter introduces another area of study which is important in order to consider the
Euclidean Steiner problem, computational complexity.

11



Chapter 3

Computational Complexity

Computational complexity is an area of study combining Mathematics and Computer Science. It
explores how difficult it is for problems to be solved algorithmically using computers and provides
a means of comparing how difficult problems are. The Euclidean Steiner problem is an extremely
difficult problem to solve, even using the very advanced computers we have today, falling into a class
of problems called N P-hard which means that no polytime algorithm can solve it. An understanding of
computational complexity it not actually necessary in order to consider the Euclidean Steiner problem,
however I feel a introductory understanding of it adds a very interesting dimension to the study of
the problem, which is what this chapter aims to provide.

We will start by looking at what computational problems are and introduce the four different types
of computational problems. We will then move on to look at complexity theory which is the formal way
of comparing the difficultly of algorithms. Here we will introduce big O notation which is a very useful
tool used in complexity theory. Next we will discuss complezity classes which is a way of grouping
problems depending on how difficult they are. Following this we will touch briefly on the theory of
N P-completeness and the NP # P problem which is one of the central challenges of all Computer
Science and for which the Clay Mathematical Institute has offered a reward of $1000000 for a correct
proof. This chapter concludes with a mention of the complexity of the Euclidean Steiner problem.

The main references used in this chapter are [18, 16, 11, 17, 13].

3.1 Computational Problems

3.1.1 Meaning of Computational Problem

Computational problems are ones that are suitable to be solved using a computer and which have a
clearly defined set of results. In other words, the distinction between correct and incorrect solutions
is unambiguous. For example, deciding the correct sentence to give a criminal in court is not an
algorithmic problem but translating text is. Algorithmic problems are defined by the set of allowable
inputs and a function which maps each allowable input to a set of results.

The inputs for a problem are called instances. The instances for a computational problem change
but the question always remains the same. For example, a well known computational problem is:
INSTANCE: positive integer n
QUESTION: is n prime?

3.1.2 Types of Computational Problem
There are four main types of computational problem:

1. Decision problem: A problem where the only possible answers to the question are YES or NO.
An example of a decision problem is the 3-colour problem. The instance in this case is a graph
(encoded into binary), and the output is an answer to whether or not it is possible to assign one

12



of 3 colours to each vertex of the graph, without two adjacent vertices being assigned the same
colour. Figure 3.1 shows an example of a graph which has been sucessfully 3 coloured, so the
output for this instance would be YES.

Figure 3.1: 3 Coloured Graph

2. Search problem: A problem where the aim is to find one of potentially many correct answers.

3. Optimization problem: A problem where the aim is to return a solution which is in some way
optimal, i.e. the best possible answer to a particular problem. An example of an optimization
problem is the minimum spanning tree problem which we looked at in the previous chapter.
Again the instance is a graph, and in this case the output is a tree which is a subset of the graph
and connects every vertex and for which the sum of edges is the shortest.

4. FEwvaluation problem: A problem where the value of the optimal solution is returned.

3.1.3 Algorithms

An algorithm is a method for solving a problem using a sequence of predefined steps. In the previous
chapter we looked at two algorithms used for solving the minimum spanning tree problem: Prim’s
algorithm and Kruskal’s algorithm. All computational problems are solved using algorithms so
they are also sometimes refered to as Algorithmic problems.

3.2 Complexity Theory

Complexity is a measure of how difficult a problem is to solve. There are different ways in which the
difficulty of a problem can be assessed. For computational problems, the two most common ways used
to define the complexity of a problem are the time taken for an algorithm to solve the problem and
the space (memory) used by a computer to compute the answer. We will consider a quantity based
on the computational time taken for the best possible algorithm to solve a problem as the measure of
its complexity.

3.2.1 Measuring Computational Time

Computational time for a problem depends on: the input, z; the computer, ¢; the programming
language of the algorithm, L; and the implementation of the algorithm I. The effect input x has
on computational time is clear: for larger the instances, the solution will take longer to compute
than for smaller instances. The dependence of computational time on ¢, L and I makes it difficult
to compare algorithms, as keeping these three variables the same in all circumstances is difficult
to achieve. However fortunately the dependence of computational time on these three quantities is
controllable.

13



Computational time can be simplified to a more abstract notion of computation steps which de-
pends only on the algorithm A and the input x. The computation steps must be defined as a number
of allowable elementary operations, these are: arithmetic operations, assignment, memory ac-
cess and recognition of next command to be performed. The computation time, t4(z) of
algorithm A can now be defined as a function of input « where ¢4 is the number of previously defined
computation steps.

The formal definition of an algorithmic tool which will perform these steps is a random access
machine (RAM). It is known that every program in every programming language for every computer
can be translated into a program for a RAM, with only a small amount of efficiency lost. For each
programming language and computer there is a constant k for which the translation into RAM pro-
grams increases the number of computation steps by no more than k. The Turing Machine is the
most well known RAM used. The model dates back to an English logician, Alan Turing whose work
provided a basis for building computers. This is the RAM model which we consider to be using in
this chapter. We will not look at how exactly the Turing machine works, as it is not essential to our
understanding of complexity theory in this report.

3.2.2 Comparing Algorithms

Computational time, t4(x) can be used to compare algorithms. Algorithm A is at least as fast as
algorithm A’ if t4(x) < ta(z) for all z. One problem with this expression is that it is only for a very
simple algorithm that it would be possible to compute t4(x) for all  and hence test the relationship.
Another problem is that when comparing a very simple algorithm A with a very complicated algorithm
A’ it is sometimes the case that t4(x) < ta/(x) for small x but t4(z) > ta(z) for large x.

To resolve the first of these problems one can, instead of measuring the computational time for each
input z, measure the computational time for each instance size, n = |z|. For example, if the problem
we were considering was the minimum spanning tree problem, we would measure the computational
time of Prim’s algorithm once for each number of vertices n, instead of for all possible graphs.

A commonly used measurement for computation time is worst-case runtime: ta(n) := sup{ta(x) :
|z| < n}. This is a measurement of the computation time of an algorithm for the longest case up to
a certain instance size. Also, t%(n) :=sup{ta(x) : |x| = n} is often used. A monotonically increasing
function f(z) is a function such that for = increasing f(z) is nondecreasing. t% = t4 when t% is
monotonically increasing, which is the case for most algorithms.

3.2.3 Big O Notation

Big O notation describes the limiting behaviour of a function as the parameter it depends on tends
either towards a particular value or infinity. Big O notation allows for the simplification of functions
in order to consider their growth rates. This notation is used in complexity theory when describing
algorithmic use of space or time. More specifically for us, it is useful when discussing computation
time, t4(z). This subsection will give an introduction to the notation.

Let f(x) and g(x) be two functions defined on a subset of real numbers. One writes

f(z) = O(g(z)); 2 — o0 (3.1)

if and only if, for sufficiently large values of x, f(z) is at most a constant multiplied by g(x) in absolute
value. That is, f(z) = O(g(x)) if and only if there exist a positive real number M and a real number
o such that

()] < Mlg()|| = > 0. (3.2)
In practice, the O notation for a funtion f(x) is defined by the following rules:

o If f(x) is the sum of several terms, the one with the largest growth rate is kept, and all others
are omitted.
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e If f(z) is a product of several factors any constants are omitted.

For example, let f(z) = 92° — 423 + 122 — 76. The simplification of this function using big O
notation as x goes to infinity is as follows. The function is a sum of four terms: 92°, —4z3, 12z and
—76. The term with the largest growth rate is 92° so discard the other terms. 92° is a product of 9
and x°, since 9 does not depend on x, omit it. Hence f(x) has a big O form of 2°, or, f(z) = O(z?).

3.2.4 Algorithmic Complexity

So far we have looked at the measuring computation time of algorithms and comparing algorithms.
We now need to define the complexity of a problem. The algorithmic complexity of a problem is f(n)
if the problem can be solved by any algorithm A with a worst-case runtime of O(f(n)).

For example, a problem p might be solvable quickest by an algorithm with worst-case runtime
given by the function, T'(n) = 5n3 + 6n — 9. As n gets big, the n? term will dominate so all other
terms can be neglected and the problem has algorithmic complexity of n3. Even if the best algorithm
for p had worst-case runtime given by T'(n) = 1000000n3, as n grows the n3 will far exceed the 1000000
and again the problem would have algorithmic complexity of n3.

3.2.5 Complexity of Prim’s and Kruskal’s algorithms

In the previous chapter we looked at how Prim’s and Kruskal’s algorithms for the minimum spanning
tree problem work. It turns out that Prim’s algorithm has an algorithmic complexity of the order
O(|V|?) where |V is the size of the set of vertices. Kruskal’s algorithm has an algorithmic complexity
of the order O(|E|log|V|) where |E| is the size of the set of edges and |V| is the size of the set of
vertices. The order of complexity for Prim’s algorithm is greater than that for Kruskal’s algorithm
so generally it will take a computer more steps to solve the minimum spanning tree problem using
Prim’s algorithm than using Kruskal’s algorithm.

3.3 Complexity Classes

When using algorithms practically, improving computation time by a polynomial amount, logarithmic
amount or even a constant might have an important effect. However in complexity theory, improve-
ments of a polynomial amount are basically indistinguishable. Complexity theory groups problems
together into complezity classes depending on what the function of their algorithmic complexity is.
The main distinction is made between problems which have a polynomial function of complexity and
those which do not. Problems which have a polynomial function of complexity are said to be solvable
in polynomial time and are considered to be efficiently solvable for all instances. We will now introduce
the main complexity classes and discuss which complexity class the Fuclidean Steiner problem falls
into.

3.3.1 P Complexity Class

A problem, pi, where the best algorithm to solve is has worst-case runtime given by T'(n) = 4n° +
6nt — 9, has algorithmic complexity of order n°. This problem has a polynomial function for worst-
case runtime and is therefore said to be solvable in polynomial time. A problem, ps, where the best
algorithm has a worst-case runtime given by 7'(n) = 6™ 4 €2" — 10, has an exponential function. It is
clear that as n gets big for both problems, the runtime for po will be much longer than the runtime
for py.

Definition. 3.1. A computational problem belongs to the complexity class P of polynomially solvable
problems and is called a P-problem, if it can be solved by an algorithm with a polynomial worst-case
runtime.
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Whether or not a problem falls into complexity class P essentially decides whether or not it is
considered to be efficiently solvable.

3.3.2 NP Complexity Class

An algorithm is deterministic if at every moment the next step is unambiguously specified. In other
words the next computation step depends only on what value the algorithm is reading at that moment
and the next algorithmic instruction.

A nondeterministic algorithm has the possibility to choose at each step between a number of
actions and also try more than one path. The concept can be thought of in a number of ways, two of
which are:

e All possible computation paths are tried out.

e Algorithm has the ability to guess computation steps.

Practically this idea does not make much sense but is important theoretically when considering com-
plexity classes.

Definition. 3.2. A computational problem belongs to the complexity class NP of nondeterministic
polynomially solvable problems and is called a N P-problem if it can be solved by a nondeterministic
algorithm with a polynomial worst case runtime.

Another way of looking at N P-problems is that if you guess an answer it is possible to verify
whether or not it is the solution in polynomial time. This is different from P-problems where, without
any hint, the correct solution can be found in polynomial time.

3.3.3 Summary of Important Complexity Classes

There are many different complexity classes. They are defined by a combination of: the function
of worst-case runtime, the concept of complexity used and which RAM model is used to model the
algorithm. The two complexity classes which we have looked at both used computation time as the
resource constraint and the Turing machine as the model of computation; they are summarized in
Table 3.1.

Complexity class Model of computation Resource constraint
P Deterministic Turing Time poly(n)
NP Non-deterministic Turing Time poly(n)

Table 3.1: Some Important Complexity Classes

3.4 Theory of NP-Completeness

3.4.1 Reduction

Problems are called complexity theoretically similar if they belong to the same complexity class. If
problems are complexity theoretically similar, they are also algorithmically similar. If an algorithm for
one problem p; can be obtained from an algorithm for another problem ps, with only a polynomially
difference in steps, then the problems are algorithmically similar and so are in the same complexity
class.

Reduction is the name given to turning one problem into another by showing that the an algorithm
which can solve solve one problem can be converted into and algorithm which solves another problem
in only a polynomial number of steps. If problems can be reduced into each other then finding an
algorithm which solves one problem means that both problems can be solved.
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3.4.2 Completeness

A problem p is defined to be class-complete if firstly it belongs to a class and secondly all problems
in that class are reducible to it. Class-complete problems are the hardest problems in a class. A
problem p is class-hard if all problems in the class can be reduced to it but p is not actually in the
class. Class-hard problems are as hard as any problems in the class.

3.4.3 NP-Completeness

The first problem which was shown to be N P-complete was the Boolen satisfiability problem. The
proof of this is very complicated and involves a complex breakdown of the steps a Turing machine has
to go through in order to solve the problem; the proof is given in [17]. Now that this problem has
been proved, in order to show any other problem is N P-complete, it only neccesary to shown that a
problem is reducible to the Boolen satisfiability problem.

3.4.4 NP +#DP?

There are thousands of problems which have been shown to be N P-complete. Since they are all
algorithmically similar this means that if a deterministic polytime algorithm for any of these problems
is found then there will exist a polytime algorithm for all these problems. This means either all these
problems are solvable in polynomial time and NP = P or none of them are solvable in polynomial
time and NP # P.

No one knows if NP = P or NP # P but most experts believe that NP # P. This is because
there are thousands of N P-problems and people have been searching for polytime algorithms which
solve them for years. It is widely thought that if they are all solvable by polytime algorithms, at least
one of them would have been found by now.

The NP # P? problem is one of the central challenges for complexity theory and all Computer
Science. The Clay Mathematical Institute has included this problem as one of the 7 most important
problems connected to Mathematics and there is an award of $1000000 for the first correct proof.

3.5 Complexity of Euclidean Steiner Problem

The Euclidean Steiner problem is N P-hard meaning it is as hard as any problem in the N P complexity
class. This means, at the moment, there is no known polynomial time algorithm which can solve this
problem.

3.6 Summary

This chapter was to introduce the reader to the area of computational complexity which explores how
difficult it is for problems to be solved algorithmically using computers. This topic is relevant to this
report as the Euclidean Steiner problem is N P-hard meaning there is currently no polytime algorithm
which can solve it.

We started by looking at what computational problems are and introduced the four different types
of computational problems. We then looked at complexity theory which is the formal way of comparing
the difficultly of algorithms. We then moved on to discuss complexity classes which is how problems
are grouped depending on how difficult they are to solve. We looked mainly at two complexity classes:
P-problems and N P-problems and discussed how problems which fall into the P class are considered
efficiently solvable and problems which fall into the NP class are not. We discussed the NP # P?
problem, one of the central challenges of Computer Science and how a proof of this would mean that
no N P-problems are solvable in polynomial time.
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This concludes the two introductory chapters to help with the understanding of the Euclidean
Steiner problem. In the next chapter we move on to look at what the Euclidean Steiner problem
actually is.
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Chapter 4

What is the Euclidean Steiner
Problem?

The first two chapters of this report were to introduce the reader to two important ideas of study
which are useful for understanding the Euclidean Steiner problem and its intricacies. We move on
now to introduce what the Euclidean Steiner problem is.

We will start by looking at the historical background of the problem. Firstly introducing the
trivial cases of the problem in order for the reader to logically build up their understanding. The first
interesting case of the problem is then discussed under the name of Fermat’s problem which is how
it was first proposed and two solutions using geometric constructions are discussed. A computational
example of Fermat’s problem is then given followed by a proof of Fermat’s problem using calculus.
The generalization of Fermat’s problem to the general case will then be discussed along with the
developments made to the problem and the Mathematicians who made them over the past few hundred
years. The next section will move on to discuss the basic ideas surrounding the Euclidean Steiner
problem. We will start by defining some notation and terminology and will then move onto discuss
the three different important types of tree involved in the problem, Steiner minimal trees, Steiner
trees and relatively minimal trees. The next section will discuss the basic properties of one of these
types of tree, Steiner trees. Finally in this chapter we will look at the number of Steiner topologies
that there are for a given problem which is the main reason why this problem is so difficult to solve.

The main references used for the historical background section are [6, 19, 2, 13| and the main
references used for the rest of this chapter are [13, 9].

4.1 Historical Background

4.1.1 Trivial Cases (n =1,2)

The easiest way to approach the Euclidean Steiner problem is to first consider the simplest cases and
then build the concept up. The first case of the problem is the n = 1 case, which is to minimize
the lengths connecting a single point, vy, in the Euclidean plane. Clearly for this case the connecting
distance is zero; see Figure 4.1(a).

The next case is the n = 2 case where problem is to connect two points, v1 and v, in the Euclidean
plane with minimum length. The minimum distance connecting two points is just a straight line
between the points; see Figure 4.1(b).

4.1.2 Fermat’s Problem (n = 3)

The origins of the Euclidean Steiner problem date back to the mathematician Fermat (1601-1655) who
is most famous for posing another problem, commonly known as Fermat’s Last Theorem: no three
positive integers a, b, and ¢ can satisfy the equation a™ 4 b = " for any integer value of n greater
than two. Like Fermat’s last theorem, Fermat’s problem, sparked up many years of mathematical
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Figure 4.1: Trivial Cases

research and discovery. Fermat proposed his problem in the form: Find in the plane a point whose
total distance from three given points is minimal. This is the n = 3 case of the Euclidean Steiner
problem.

Two mathematicians, Torricelli and Simpson, proposed geometric solutions to this problem over
the next hundred years. These ruler and compass constructions, to find the point which minimises the
distance to three other given points in the plane, are as follows. Denote the three points in the plane
as v1,v9,v3. Both the Torricelli and Simpson methods start by first joining the three points to form
a triangle Awvjvovs and then constructing three equilateral triangles, one on each edge of the original
triangle, Avjvovs. The Torricelli method then constructs three circles circumscribing each equilateral
triangle. The point at which all the circles intersect is called the Torricelli point, p, this is shown in
red in Figure 4.2(a). The Simpson method works by drawing a Simpson line between each vertex of
the equilateral triangles not in Avyvovs with the opposite vertex which is in Avjvovs. The intersection
of the Simpson lines is the same as the Torricelli point which is shown in red in Figure 4.2(b).

The point which is found using the Torricelli or Simpson method, which solves Fermat’s problem,
makes three angles of 120° with each of the other two sets of points vy, vo, v3.

U2 V2

(a) (b)
Figure 4.2: Torricelli and Simpson Methods

It turns out that both these geometric methods fail to construct a minimising point when any of
the angles of Avjvgvs are larger than 120°. If this is the case, the Torricelli method constructs a point
outside the triangle Avivovg and not all three lines in the Simpson method intersect in the same place.
When one of the angles is larger than 120°, the point which minimises the total distance from the
three given points is actually the point with the obtuse angle. Figure 4.3 shows three points vy, va, vs
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where the interior angle vyvovs is 130°. The point which minimises the total distance connecting the
three points in this case is the point vs.

U3

U1 V2

Figure 4.3: Angle greater than 120°

It was a mathematician, Heinen, who brought all these ideas together to formulate the first com-
plete solution to Fermat’s Problem in 1834:

1. If one of the interior angles formed from three points v, vs, vs is greater than 120°, then the
point defined by Fermat’s problem coincides with the vertex where the angle is greater than
120°.

2. If all the interior angles formed from three points v1, v, v3 are less than 120°, then the point
defined by Fermat’s problem is the intersection of Simpson lines or the Torricelli point and is
the point which makes 3 angles of 120° with points and v, vo, vs.

Fermat’s problem is the Euclidean Steiner problem for the case where n = 3. This problem and
its solution will be useful when discussing the problem for greater values of n. Proofs of correctness
for both the Torricelli method and Simpson method are given in Interactive Mathematics Miscellany
and Puzzles, [3].

4.1.3 An Example of Fermat’s Problem

We will now look at an example of finding the point which solves Fermat’s problem using the Torricelli
method. We want to find the point which minimises the total distance between v; = (2,6), v2 = (5, 3)
and vz = (5, 8).

a) First we join the points (2,6), (5,3) and (5,8) to form a triangle as shown in Figure 4.4(a).

b) The next step is to find the three points to construct three equilateral triangles one on each
of the edges. To find the third vertex of the equilateral triangle with vertices (2,6) and (5,3)
call the third vertex (z1,71) and solve the two simultaneous equations: \/(z1 —2)2+ (y1 — 6)2 =
V(2 —=5)2+ (6 —3)2 =18 and /(21 — 5)%2 + (y1 — 3)2 = V/18. Solving gives the equation y = x + 1
and the quadratic 222 — 142 + 11 = 0 which gives = [14 + V142 — 4 x 2 x 11]/4 = 0.902, 6.098.
This gives us two possible points for the third point of the triangle (0.902,1.902) and (6.0981,7.0981).
As we want the equilateral triangle to be formed on the outside of to original triangle we can select
the point (z1,y1) = (0.902,1.902) as the point we want. The third point of the equilateral trian-
gle with vertices (2,6) and (5,8) can be found in the same way by solving \/(z2 — 2)% + (y2 — 6)2 =
V(2 —=5)2+ (6 —8)2 = V13 and /(z2 — 5)2 + (y2 — 8)2 = V/13. The two possible points are (5.232,4.402)
and (1.768,9.598) and considering the diagram we select (z2,y2) = (1.768,9.598). The third point
for the equilateral triangle with vertices (5,3) and (5,8) is found in the same way giving (x3,y3) =
(6.443,5.5). Points (x1,41), (z2,y2) and (x3,y3) are shown in blue in Figure 4.4(b).

¢) The midpoint of each equilateral triangle is found by finding the midpoint of the three vertcies.
Call the midpoints of the three equilateral triangles mi, mo and ms. m; = ([2+ 5 + 0.902]/3,[6 +
3+ 1.902]/3) = (2.634,3.634), my = ([2+ 1.768 4+ 5]/3,[6 + 9.598 + 8] /3) = (2.923,7.866) and mg =
(6.443,5.5). The points my, mg and mg are shown in red in Figure 4.4(c). The midpoint of an
equilateral triangle is the same as the midpoint of the circle which circumscribes it. The Torricelli point
which we are searching for is the point at which the three circles circumscribing the three equilateral
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triangles intersect. It is found by solving the three simultaneous equations which are the equations of
the three circles. C} : (X —2.634)2 + (Y — 3.634)2 = 6, C : (X —2.923)? + (Y — 7.866)% = 4.332 and
Cs: (X —6.443)% 4+ (Y — 5.5)2 = 8.335. Solving for X, Y gives (X,Y) = (3.583,5.893) which is shown
in green in Figure 4.4(c).

(1.77, 9.60)
(5, 8) (292,787
(2,6
[ ]
2 (2.63, 3.63
(a) (b) (c)

Figure 4.4: Fermat’s problem: An example

The point we found using the Torricelli construction, (3.583,5.893), is the point which minimises
the total distance to the three given points (2,6), (5,8) and (5,3). We also know that it should make
three angles equal to 120° with each pair of points from (2,6), (5,8) and (5,3). We shall check this
condition now.

The cosine rule is a rule for the relationship between the angles and lengths of non right-angled
triangles. If the lengths of the edges of the triangle are denoted by a, b and ¢ and the angles are
denoted by A, B and C, where the angle is opposite the edge of the same letter, then the cosine rule
is given by (4.1).

2bccos A = b + 2 — a? (4.1)

Denote the angles which the Torricelli point, (3.583,5.893), makes with the three points as 61,
f> and 3. The values of 61, > and 03 can be found using the Cosine rule. The values for 6,
0, and 63, as shown in Figure 4.5, are calculated as follows. 2 x 2.539 x 3.221cosf#; = 2.539% +
3.221%2 — 52 & cosfh = —0.50003 < 6 = 120.0. 2 x 3.221 x 1.587cosf); = 3.221%2 + 1.587% —
4.2432 < cosfly = —0.49980 < 0y = 120.0. 2 x 1.587 x 2.529cosf3 = 1.587% + 2.539% — 3.606> <
cosfl3 = —0.5012 < 05 = 120.1

(5, 8)
p

(27 6) (‘ 91

(5, 3)

Figure 4.5: Three angles of 120°
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4.1.4 Proving Fermat’s Problem using Calculus

Given a function f(z), the minimum or maximum points of f(z) are either found at:
1. a stationary point of f(z), which is a point at which —d’;f) =0

2. a rough point of f(z), which are either points at which & ( ) does not exist or at the end points
of f(x), a,b

If the maximum or minimum point is at a stationary point, p, the nature of the point is decided
2
by the second derivative of the funtion at p, L2

dz?

o 1t & f( ) < 0 then p is a maximising point.

o If @ f( ) > 0, p is a minimising point.

If f is a function of more variables, f(x1,xa, ..., x;), the partial derivatives of f must be considered.
The stationary points are found at the pomts where of a(:;l) = (m) = 8]:9(51) = 0. For example, to
find the stationary points of f(z,y) = 2?4 4xy+2y* + 3z — y—|—5 first calculate the partial derivatives,

0
ox

0

f(.y) =4z +4y — 1.
dy

Stationary points are then found by solving the equations

2z +4y+3=0
dr+4y—1=0

Solving for & and y gives the point (2, —7/4). This is a minimising point for f(z,y).

A new way to consider Fermat’s problem is by expressing the total length joining the given points
and the point we are searching for as a function and then differentiating the function to find the value
which minimises it. This idea can be used to prove the result of Fermat’s problem which is what we
shall do here. This proof is an embellishment of a proof given in [15]. Denote the three points as
(a1,b1), (a2,b1), (as,c3) and the point which minimises the total length connecting them as (x,y).
The distances between the point (z,y) and the three other points are given by

dy = /(z — a1)? + (y — b1)?
dy = \/(z — a2)? + (y — by)?
d3 = /(x — a3)2 + (y — b3)?

Two possible problems to consider are (A): to minimise dj+ds+ds and (B): to minimise d%+d%+d§.
Problem (A) is Fermat’s problem. We shall consider problem (B) first as it is easier to solve.

Problem (B) is to minimise f(z,y) = d?+d3+d% = (x —a1)®+ (y — b1)? + (v — a2)? + (y — b2)% +
(z — a3)? + (y — b3)?. Differentiating with respect to z and y we obtain

8f(x Y) =2[r—a1+z—az+z— as]
ox

U@L _ oy by 4= by g — by)
dy

Solving 8f(x’y) =0, éy’y) =0 gives x = 1/3[a; + a2 + a3] and y = 1/3[by + bz + bs]. This is the
centeroid of the triangle (a1,b1), (a2,be), (as,bs) as shown in Figure 4.6(a).
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Figure 4.6: Centriod and Torricelli point

Problem (A) is to minimise

f(:v,y):d1+d2+d3:\/(x—a1)2 y—b1)? +\/3:—a2 y — by)? —|—\/ZE‘—CL3 + (y — b3)?.

Differentiating with respect to z and y we obtain

Of(x,y) _ (x —a1) n (z —a2) . (z — a3)

Oz Ve —a)?2+(y—b)? (e —a)?+y—0)? (r—a3)?+(y—b)
of(x,y) _ (y—b1) N (y — bo) N (y — bs)

dy Ve —a)?+y—-b)? V(@—a)?+y—b)? (r—a3)?+(y—bs)?

Setting the partial derivative to zero and solving for x and y in terms of a1, ao, as, b1, by and
bs turns out to be a very difficult system of equations to solve. Fortunately there is another way to
approach it.

For a function of two variables, f(x,y), the vector of the partial derivatives, (%, %5)’ is called the

gradient of f(z,y) and is denoted grad f (x, y). Taking implicit derivatives of di = \/(z — a1)? + (y — b1)?
& d? = (z—a1)?+ (y — b1)? gives 2d1(ad1) = 2(z —ap) and 2d1(8d1) = 2(y — b1). Dividing through
by 2d; gives

8d1 _:L'—al
dr  dy
ody  y—b
dy

Hence the gradient of d; is equal to G1 = (%5, y_bl ). Length of the gradient is: (— al) + (y )

2
j 1 meaning the gradient is a unit vector. The gradient of d; is a unit vector G from center pomt

(m,y). Similarly, distances do and dg have unit vectors GGo and GG3. The unit vectors, G1, G2, Gg add
to zero in order for the function f(z,y) to be minimised, G; + G2 + G5 = 0 This only occurs when
the vectors G, G2, G'3 have equal angles between them. Hence the point (z,y) is at the point which
makes three angles of 120° with points (a1,b1), (az2,b2), (as,c3). This point is the Torricelli point of
the triangle as shown in Figure 4.6(b).

4.1.5 Generalization to the Euclidean Steiner Problem

Fermat’s problem: given three points in the plane, v1, va, vs, find point p such that |vip| + |vap| +
|usp| is minimal, can be generalised in a number of ways.

The first generalisation to be seriously considered during the next few hundred years after Fermat
posed his problem was: Given n points in the plane vi,vs, ..., Vs, find in the plane point p such that
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Z;L:l |vjp| is minimal. This problem can be thought of as, given a polygon in the plane, trying to
find the point inside the polygon so that the total length between each of the vertices and the point is
minimal. This generalisation produces a star with p connected by an edge to each of the vertices. It is
in fact this generalization of the problem which was looked into by the mathematician Jacob Steiner
(1796-1863) who was a professor at the University of Berlin specializing in Geometry and whose name
is still attributed to a more interesting generalisation of Fermat’s problem.

This more interesting generalisation of Fermat’s problem was actually made by Jarnik and Kossler
around 1930, it is: Given n points in the plane, construct the shortest tree whose vertices contain
these n points. Courant and Robbins discussed Fermat’s problem and this generalization of it in their
book What is Mathematics? which was published in 1941. It was they that called the problem the
FEuclidean Steiner problem and expressed it in the form: Given n points in the plane, find a shortest
network that interconnects them. It is not known whether Steiner made any particular contributions
to this generalization of the problem, or even if he was aware if it.

Melzak developed the first algorithm for solving the Euclidean Steiner problem, published in his
paper On The Problem Of Steiner, [1], which will be looked at in more detail in the next chapter on
exact algorithms for solving the Euclidean Steiner problem. His algorithm builds on the geometric
solution for Fermat’s problem.

It was Gibert and Pollak who first gave the name Steiner minimal tree to the solution of the
Euclidean Steiner probem, the shortest network connecting the n points and Steiner points for vertices
of the Steiner minimal tree which are not one of the n original vertices. They discussed the problem
in their paper Steiner Minimal Trees [9], which is the main reference along with the book The Steiner
Tree Problem [13], for the rest of this chapter.

4.2 Basic Ideas

4.2.1 Notation and Terminology

In Chapter 2 a network was defined, as was the Euclidean minimum spanning tree problem: given a
Euclidean graph G(V), find a subgraph such that total sum of the Euclidean distances between the
vertices is minimum. The difference between the Euclidean minimum spanning tree problem and the
Euclidean Steiner problem is, the solution of the Euclidean minimum spanning tree problem must
include only the vertices, V', however the solution of the Euclidean Steiner problem must include the
original vertices, V', but can also include other points in the plane as extra vertices in order to make
the total connecting length smaller.

Possible solutions for the Euclidean Steiner problem on n points are networks, 7', in the Euclidean
plane interconnecting the n given points and also some extra points from the plane. The vertices of
T are made up of the n original points which we denote as terminals, t;, : = 1,..,n as well as extra
vertices added in the plane. Any vertex of 7" which is not a terminal is called a Steiner point, s;.

The name given to the solution of the Euclidean Steiner tree problem, that is: the network T
interconnecting n, with the addition of sj, for which the total distance between the n point is minimal,
is a Steiner minimal tree.

4.2.2 Kinds of Trees

A Steiner minimal tree, as its name suggests, must be a tree. Recall from Chapter 2 that a minimum
spanning graph for a set of vertices must be a tree, as removing the edge which forms the circuit results
in a shorter graph without the vertices becoming disconnected. Hence when searching for the solution
to the Euclidean Steiner problem, only possible trees for the given network need to be investigated.
Therefore when we refer to network 7', we shall refer to it as a tree.

Steiner minimal trees for a given input n are difficult to find. This is because a network 1" which
is locally minimal, meaning it is minimal over a section of the possible solutions, is not necessarily
globally minimal, the absolute minimum out of all possible solutions.
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Figure 4.7: Equivalent topologies
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Figure 4.8: Different topologies

The topology of a tree T, is a description of the topologically features of T'. This means a description
of which pairs of vertices from all possible terminals and Steiner points 1, ..., t,, 51, ...sj are connected.
The topology only specifies the connections, not the positioning of the Steiner points and thefore not
the lengths of the edges. The positioning of the n terminals is known as this is the input for the
problem. Figure 4.7 shows two graphs which are topologically identical. Both have four terminals,
v1,...,04, and two Steiner points, s1,$2 whose positions change between Figure 4.7(a) and Figure
4.7(b). The black points are the terminals and the unfilled circles are the Steiner points. It is clear
that for both trees, terminals v; and ve are connected to the same Steiner point, as are v3 and v4.
However the location of the Steiner points s; and sy are different in the two graphs and hence the total
length of the edges connecting the terminals are different. Figure 4.8 shows two networks which are
topologically different. In Figure 4.8(a), terminals v; and vy are connected through the same Steiner
point as are vs and v4 but in Figure 4.8(b), terminals v; and v3 are connected through the one Steiner
point and vs and v4 through the other. A tree which is shorter than any other tree with the same
topology is called a relatively minimal tree for that topology. 4.7(a) is actually the relatively minimal
tree for its topology.

Relatively minimal trees are not allowed to have any edges of zero length. Due to this condition,
some topologies have no relatively minimal tree. Consider Figure 4.9(a); the length of the tree with
this topology is minimal as |s; — s3] — 0. The tree which is approached is called a degenerate tree.
Figure 4.9(b) is the degenerate tree for this topology.

Two operations which can be used to act on a tree T" are called shrinking and splitting. Deleting
an edge and collapsing its two end points is called shrinking. The opposite of shrinking is splitting
which consists of disconnecting the edges, [v1,u] and [ve, u], which are connecting vertex u to v; and
vg from vertex u, and then forming three new edges, [v1, u'], [v2, ¥], [u, u/], connecting vertices v, uy, ug
to a newly formed vertex v'. Figure 4.10(a) shows the resulting graph when you shrink edge [v1, $1]
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Figure 4.9: Degenerate tree

of Figure 4.7(a). Figure 4.10(b) shows the resulting graph when you re-split edges [v1,v2] and [v1, s
of Figure 4.10(a).

vl- er | X |
U3 (% U3 (%

(a (b)

Figure 4.10: Shrinking and Splitting

If a tree cannot be shortened by a small permutation, including splitting and shrinking, then the
tree is called a Steiner tree. A Steiner tree is always a relatively minimal tree for its topology and a
Steiner minimal tree is always a Steiner tree.

. . . always . always . . .
Steiner minimal tree —" Steiner tree —° relatively minimal tree

Relatively minimal trees are useful because at most one relatively minimal tree exists for a topology
and if one does exists then it is possible to construct it. It is possible to obtain Steiner minimal trees
by first constructing the relatively minimal tree for each possible topology and then finding out which
one has the shortest length, this will be the Steiner minimal tree. As we will see, this is not an easy
thing to do as there are thousands of different relatively minimal trees even for a network with n = 6.

4.3 Basic Properties of Steiner Trees

We have looked at some basic ideas surrounding the Euclidean Steiner problem including three types
of tree which are important when trying to solve it. This section looks at some basic properties of
Steiner trees. These properties make it easier to search for all the Steiner trees for a given problem,
hence narrowing down the search for the Steiner minimal tree.

4.3.1 Angle Condition

If two edges of T meet at an angle which is less than 120° then it is possible to shorten the tree in
the following way. Call the vertex at which two edges, e; and e, meet at an angle less than 120°, v.
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Next find two points p; and py on e and es respectively such that |p; — v| = |p2 — v|. A new Steiner
point, s, can then be located at the Torricelli point of Apjvps (recall the n = 3 case of the Euclideam
Steiner problem). A new shorter tree is formed by connecting v and the other two endpoints of e; and
e2 to Steiner point s; see Figure 4.11. Hence, a condition for all Steiner trees is: no edges can meet
at an angle of less than 120°. This is known as the angle condition for Steiner trees. The angle
condition means that no vertex of a Steiner tree (Steiner point or terminal) can have degree greater
than 3 as this would result in an angle less than 120°. The angle condition also means that no edges
of a Steiner minimal tree can cross because crossing edges results in two angles less than or equal to
90°.

Figure 4.11: Angle condition

4.3.2 Degrees of Vertices

Steiner points are not required to be in a Steiner tree T', their purpose is only to reduce the total length
of connecting lines. As such, it is clear that all Steiner points of degree 1, d(s;) = 1 can be removed
from T, along with their connecting edges, making the total length of the tree smaller. Furthermore,
all Steiner points of degree 2, d(s;) = 2, can be removed, along with their two connecting edges,
and be replaced by an edge connecting the two vertices (whether they be terminals or Steiner points)
adjacent to the Steiner point, s;. From this we can deduce that all Steiner points must have degree
of at least 3, d(s;) > 3.

A result of the angle condition is that all vertices of a Steiner tree, terminals or Steiner points,
must have degree less than or equal to 3. Hence from this we can deduce that all Steiner points must
have degree of exactly 3, d(s;) = 3, with three edges meeting at 120°. Also, that all terminals must
have degree of less than or equal to 3, d(v;) < 3, with edges meeting at angles of 120° or more.

4.3.3 Number of Steiner Points

Each Steiner tree T has n vertices, v1,...,v, and k Steiner points, s1, ..., Sp. Recall the results from
Chapter 2: (i) every tree with |V| vertices has |E| = |V| —1 edges, (ii) for all graphs, |E| = M

Theorem. 4.1. A Steiner tree has at most n — 2 Steiner points.

Proof. A Steiner tree has n + k vertices, therefore by (i), it has n + k£ — 1 edges. Since each Steiner
point has degree 3, d(s;) = 3 and each terminal has at least degree 1, d(v;) > 1, by (ii), the number
of edges must be at least [3k + n|/2. It follows that

n+k—12>[3k+n]/2 (4.2)
n—2>k (4.3)
O
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4.3.4 Summary of Geometric Properties

Let T' be a Steiner tree with n terminals, v; and k Steiner points, s;:
1. T has vertices v1, ..., Un, 81, ..., Sk
2. T has no crossing edges
3.d(s;))=3,1<i<k
4. Each sj, 1 < j < k is the Steiner point for the triangle made up of the 3 vertices adjacent to s;
5.d(v;)) <3,1<i<n

6. 0<k<n—-2

4.3.5 Convex hull

In Euclidean space, a shape S is called convex if, for every pair of points within it, p; and p;, every
point on the straight line, f)z—ﬁ; is also within S. For example a circle is convex but a cresent is not.
The convexr hull for a set of points v, ...,v, in Euclidean space is the minimal convex shape
containing vy, ..., vn, i.e. the shape for which the total area is minimum. This concept can be thought
of as the points v1, ..., v, being posts, the convex hull is then the shape created if you put a big elastic
band around the outside of the posts.
In a Steiner tree, all the Steiner points lie in the convex hull of the terminals vy, ..., vy,.

4.3.6 Full Steiner Trees

A topology with the maximum number of Steiner points, &k = n — 2, is called a full topology. The
corresponding relatively minimal tree for this topology is called a full Steiner tree. A full Steiner
tree is a Steiner tree because there is no possibility of splitting it and forming new Steiner points.
In a full Steiner tree, every terminal has degree of exactly 1, d(v;) = 1. Every full Steiner tree has
n+k—1=n+n—2—1=2n— 3 edges.

The definition of a subgraph was given in Chapter 2. A Steiner topology can be uniquely broken
down into edge disjoint subgraphs, (edge disjoint meaning none of the subgraphs share any edges)
each of which is a full Steiner topology. Full Steiner trees are easier to construct than Steiner trees so
one way to find a Steiner tree is to build it up from its full Steiner tree components.

A Steiner tree which is not full can be decomposed into a union of full trees in the following way:
Replace each terminal v; which has degree d(v;) = d where d > 2 by d new terminals v;1, ..., v;4 all
locacted at the same position, v;, but disconnected. Connect each of the d edges which were connected
to v; to a different new terminal, v;1, ..., v;g. This will result in several smaller full Steiner trees which
are called full components of the original Steiner tree. Conversely, when a specified topology is not
full, it is possible to find the topologies of the full components and then construct the full components
seperately before joining them to produce the desired Steiner tree.

The fact that a Steiner topology can be broken down into edge disjoint full Steiner topologies
leads to the following two corollaries. An explaination of how being able to spilt Steiner trees into full
components leads to the uniquness of relatively minimal trees and Steiner trees is given in [9].

Corollary. 4.1. There exists at most one relatively minimal tree for a given Steiner topology.

Corollary. 4.2. There exists at most one Steiner tree for a given Steiner topology.
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4.4 Number of Steiner Topologies

One way of finding a Steiner minimal tree for n is to construct all possible Steiner trees and find which
one has the shortest length. Corollary 4.2 states that there exists at most one Steiner tree for a given
Steiner topology so in order to exhaust all possible Steiner trees it is sufficient to find all possible
Steiner topologies.

Clearly the number of possible Steiner topologies increases with the number of terminals, n. We
shall now consider what the actual relationship between the number of possible Steiner topologies and
number of terminals is. Since to find a minimal Steiner tree we must consider all Steiner topologies,
the way the number of different Steiner topologies increases with n gives us an indication of how much
harder it is to find Steiner minimal trees as n increases.

Let f(n), n > 3 be the number of full Steiner topologies with for a given n. Since they are full
Steiner topologies we know they will have n — 2 Steiner points. We want first to derive a formula for
the number of full Steiner topologies, f(n).

Recall that in a full Steiner topology, every terminal has degree 1 and is adjacent to a Steiner point.
Recall also that every full Steiner topology has 2n — 3 edges. Let f(n + 1) be a full Steiner tree with
n+1 terminals. If we remove terminal v,41 and its adjacent Steiner point then we obtain a full Steiner
topology with n terminals. Every full Steiner topology with n + 1 terminals can be obtained from a
full Steiner topology with n terminals by adding a Steiner point, s;, in the middle of one of the (2n—3)
edges and adding an edge connecting s to the new terminal v,,11. Hence f(n + 1) = (2n — 3) f(n).

Theorem. 4.2. Let f(n), n > 2 be the number of full Steiner topologies for n terminals. f(n) =
(2n — 4)!1/[2"2(n — 2)1].

Proof. We prove this by induction:
Prove true for n = 3. f(3) = 1 as there is only one possible full Steiner tree for n = 3 which is

each terminal connected by one edge to the same Steiner point. f(3) = % = 1. So proved true
for n = 3.
Assume true for n. Assume that f(n) = %
 @mtD-4)  (2n-2)
Prove true for n+ 1. (Want to show that f(n+1) = D2 (o 1) 3 2("*1)(n—1)!)

fln+1)=(2n—=3)- f(n)

2n — 4)!
— (2n—3)- 2752@ _>2)!
~ (2n=3)!
~on2(p —2)!

(2n —2) x (2n — 3)!
(2n —2) x 22(n — 2)!

B (2n —2)!

S 2x2v2.(n—1) x (n—2)!
 (2n—-2)!

vl (p—1)!

O]

Let F(n,k), n > 3 be the number of Steiner topologies with n terminals and k& Steiner points,
where there are no terminals of degree 3, d(v;) = 1,2. F(n, k) can be obtained from the number of full
Steiner topologies with n = k, f(k). This is done by first selecting & + 2 terminals and a full Steiner
topology on it and then adding the remaining n — k — 2 terminals one at a time at interior points on
one of the (k+2) 4+ k —1 =2k + 1 edges. The first terminal can go to one of 2k + 1 edges, the second
to one of 2k 4 2 edges and the (n — k — 2)" to one of 2k +n — k —2 = k +n — 2 edges. So
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n (n+k—2)!

This is the number of Steiner topologies with terminals of degree 1 and 2, d(v;) = 1,2. Lets now
consider Steiner topologies with terminals of degree 3, d(v;) = 3 as well. Let ns be the number of
terminals with degree 3 in the topology. A Steiner topology with ns terminals of degree 3 can be
obtained from a Steiner topology with n — nz terminals of degree 1 and 2 and k + ng Steiner points,
by labelling n3 of the Steiner points as terminals.

Let F(n), n > 3 be the number of Steiner topologies with n terminals.

F(n)=3)_ >, (;2) o~ s, B Z!n?’)(k + ) (4.4)

k=0 n3=0

Both functions f(n) for full Steiner topologies and F'(n) for Steiner topologies are superexponential.
This means they increase even faster than an exponetial function. The first values of f(n) and F'(n)
are given in Table 4.1.

n 2134 5 6 7
f(n) 15 | 105 | 945
F(n) | 1|4 |31]360 | 5625 | 110800

—_
w

Table 4.1: How number of full Steiner topologies and Steiner topologies increases with n

4.5 Summary

This chapter introduced what the Euclidean Steiner problem is.

We started by looking at the historical background of the problem. We looked in depth at the
n = 3 case of the problem, known as Fermat’s problem and we discussed two solutions to this problem
using geometric construction. We also looked at a proof Fermat’s problem using calculus. We then
discussed the generalization of Fermat’s problem to the general case which is the Euclidean Steiner
problem. The next section looked at some basic ideas surrounding the Euclidean Steiner problem. We
introduced some notation and terminology most importantly: terminals, Steiner points and Steiner
toplogies and also the three types of tree: Steiner minimal trees, Steiner trees and relatively minimal
trees. The next section discussed the basic properties of Steiner trees which are the optimal tree for a
given Steiner topology. These properties included the angle condition, the degrees of vertices and the
number of Steiner points. Finally in this chapter we looked at the number of Steiner topologies for a
problem with n terminals and how it is given by a superexponential function of n.

Now we have looked in depth at what the Euclidean Steiner problem is, in the next chapter we
move on to look at ways of solving the problem. The next chapter explores exact algorithms which
are algorithms which search for the exact solution to the problem, these are different from heuristics
which are a type of approzimation algorithm which we shall consider in the penultimate chapter of
this report.
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Chapter 5

Exact Algorithms

The aim of this chapter is to draw together some of the ideas from the previous chapter and introduce
some algorithms used to solve the Euclidean Steiner tree problem. The algorithms introduced in this
chapter are called exact algorithms because their object is to find the exact solution to the problem.
This objective is different from that of approximate algorithms or heuristics which aim to find an
approximately good solution to the problem, but not necessarily the exact solution. Heuritics are
introduced in the next chapter

We start by returning to Fermat’s problem and introduce an algorithm called the 8 point algorithm
which is used for solving this n = 3 case of the Euclidean Steiner problem. The 3 point algorithm also
forms the basis for the first algorithm ever used to solve the Euclidean Steiner problem which is called
the Melzak algorithm, so this leads us on to discuss the Melzak algorithm. An numerical algorithm
known as Smith’s numerical method is then introduced. An example of the workings of the Melzak
algorithm and Smith’s numerical method are given; as the same example is used for both algorithms
this allows for a comparison of the methods. This chapter concludes with a brief mention on the
best exact algorithm for solving the Fuclidean Steiner problem known today which is the GeoSteiner
algorithm.

The main references used for this chapter are [1, 13, 19].

5.1 The 3 Point Algorithm

In the last chapter we introduced Fermat’s problem which was to find a point p such that the total
distance to three other points a, b and ¢ is minimised. We saw if the points a, b and ¢ make three
angles which are less than 120°, then the solution is the point, p, which for which the edges ap, bp
and cp make three angles of 120° and that this point can be found using either the Torricelli method
or Simpson method. We saw that if the points a, b and ¢ make an angle which is greater than 120°,
then the solution is the vertex of the obtuse angle. In this section we shall only consider three points
a, b and ¢ such that all angles of Aabc are less than 120°.

We shall now return to Fermat’s problem to consider a few more properties which will allow us to
construct an algorithm for the n = 3 case. We start by introducing a lemma from FEuclidean geometry
which is neccessary for the proof of the working of the algorithm. The lemma and algorithm are taken
from the book, The Steiner Tree Problem - A Tour through Graphs, Algorithms, and Complexity by
Hans Jurgen Promel and Angelika Steger, [13], the proofs are also based on the proofs in this book
but more computational steps have been added and they have been more thoroughly explained.

5.1.1 Lemma from Euclidean Geometry

Lemma. 5.1. Let Aabc be an equilateral triangle with circumscribing circle C'. Then all points p on
the smaller segment of C' between a and b make an angle of 120° between a and b and all points q on
the larger segment between a and b make an angle of 60° between a and b.
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Proof. Let the notation fabc mean the angle between the edges ab and bc. Let p be any point on the
smaller segment of C. fapc is equivalent to fagb due to symmetry, so it is enough to show that fapb
equals 120° and fapc equals 60°, to prove the lemma. s is the centre of the circle C'. The triangles,
Aasp and Absp are both isosceles because the edges as, sp, bs and sb are all the equal to the radius
of the circle, C', and hence are all equal. This means fapb = 1/2(180° — fasp) + 1/2(180° — Obsp) =
180° — 1/2(Aasb). Because Aabe is equilateral, fasb = 120°, so 180° — 1/2(fasb) = 120°. By a
similar argument, the triangle Acsp is isosceles so, fapc = 1/2(180° — fasp) + 1/2(180° — fcsp) =
180° — 1/2(fasp + Oesp) = 180° — 1/2(120° 4 120°) = 60°.

5.1.2 The Algorithm

The input for this algorithm is three points a, b and ¢ such that all the angles of the triangle Aabc
are less than 120°. The output is the Torricelli point p for a, b and c.

Algorithm. 5.1 (The 3 point algorithm).

1. Construct an equilateral triangle, Aabd such that d is on one side of the line ab and c is on the
other.

2. Construct a circle C circumscribing Aabd.

3. The Torricelli point is the intersection of the line cd with the circle C.

d
Figure 5.1: 3 Point Algorithm

Theorem. 5.1. Algorithm 5.1 does find the Torricelli point for points a, b and c.

Proof. We saw in the previous chapter that if the point p makes three angles of 120° with a, b and
¢, then p is is the Torricelli point. Therefore, in order to check whether p is the Torricelli point,
it is enough to check whether angles fapb, Obpc and fcpa are all 120°. From Lemma 5.1 we know
that fapb = 120°. By the same reasoning, if we drew a circle circumscribing the equilateral triangle
Abed’ and the line ad’ we would deduce 0bpc = 120°. From the circle circumscribing Acad” and bd”,
Ocpa = 120°. O
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Theorem. 5.2. The p found in Algorithm 5.1 satifies |ap| + |bp| = |dp|.

Proof. Let the points a, b, ¢, d and p be as explained in Algorithm 5.1 and shown in Figure 5.1 and
let point s be the centroid of the triangle Aabd. Let the angle faps be denoted «a, Odps be denoted v
and fspb be denoted (.

c
e
VP \
a b
— d —
By connecting s to the midpoint of pb, %b, the midpoint of pa, & and the midpoint of pd, pg—d, we

construct three right-angle triangles Aps%b, Aps% and Aps%. Recall that in a right-angled triangle

ladjacent|

=< - 1 5.1
cosa |hypotenuse] (5.1)
Therefore we can deduce:
1/2
cosq — L/2lap|
[ps|
1/2|b
vos = 11200
|ps|
1/2|d
ros, — /20
[ps|
If we show that cos a+ cos 3 = cos~y, it will follow that 1/;‘;’) L+ 1/|12)|Sb|p | = I@gp | which is equivalent

to |ap| + |bp| = |dp| which is what we wish to show.
From Lemma 5.1, fapb = 120° and fapd = Odpb = 60°. Hence, § = 120° — o and v = a — 60°.
Recall the double angle formula

cos(z +y) = coszcosy Fsinzsiny (5.2)

So therefore,

1
cos(3) = cos(120° — ) = cos 120 cos o + sin 120 sin o = —g5cose + - sin «v

1 3
cos(y) = cos(a — 60°) = cos v cos 60 + sin asin 60 = 5 cosa + \2[ sin «

3

Subtracting the first equation from the second we obtain cosy — cosf§ = %COSO& + %sina —

(—3cosa+ § sina) = cos . Hence cos a + cos 3 = cos~y and therefore |ap| + |bp| = |dp|.
O
5.1.3 An Example

If the points as shown in Figure 5.1 are a = (1,5), b = (6,5) and ¢ = (2,7). The point d is found by
finding the point which is the same distance from a and b, hence by solving \/(z — 1)2 + (y — 5)2 = v/25
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and \/(z — 6)2+ (y — 5)2 = v/25. d turns out to be (3.5,0.670). The midpoint of the circle is found
to be (3.5,3.557). Recall, the equation of a circle is given by

Ci(w—21)’+(@y—wm)=r" (5.3)

where (z1,y1) is the midpoint of the circle and r is the radius of the circle. Hence the equation of our
circle C is, C : (z — 3.5)2 + (y — 3.557)% = 8.332. Recall, the equation of a line through two points
(z1,y1) and (22, y2) is given by

y=v1+ (2 — 1)/ (w2 — 21)|(2 — 1) (5:4)

So the equation of the line od is: y="T7+[0.670-7)/(3.5—-2)]- (z —2)] = —4.22x + 15.44. The point
p is the point at which cd intersects C and turns out to be (2.205,6.137). By Theorem 5.2, this point
p should satify

|ap| + |bp| = |dp| (5.5)
lap| = /(1 —2.205)2 + (5 — 6.137)2 = 1.657 and |bp| = /(6 —2.205)2 + (5 — 6.137)2 = 3.962, so
lap| + |bp| = 5.62 and |dp| = /(3.5 — 2.205)2 + (0.607 — 6.137)2 = 5.68.

5.2 The Melzak Algorithm

Melzak was the first mathematician to propose an algorithm for the Euclidean Steiner problem. The
algorithm works by finding the Steiner tree for every possible topology. By Corollary 4.2, there is a
unique Steiner tree for every topology. Melzak’s algorithm focuses on how to find the Steiner tree
for a given topology, and then once they are all found, the one which is shortest will be the Steiner
minimal tree. The working of the algorithm will be explained here and an example will be given. The
algorithm, along with it derivation by Melzak, can be seen in its complete form in the paper On the
problem of Steiner, [1].

The algorithm is based on the 3 point algorithm we have just seen for the n = 3 case. Assume we
know the topology of our Steiner tree, T. We therefore know the number of Steiner points in 7" and
all the connections between the terminals and the Steiner points vy, ..., vy, 81, ..., Sk. But we do not
know the positions of the Steiner points.

Every Steiner tree with at least one Steiner point will also have at least two terminals, call them
a and b, which are connected to the same Steiner point, call it p. We say that terminals a and b are
siblings. We know that all Steiner points have degree 3, so there will be a third vertex adjacent to p,
call it ¢. We know that p is the Torricelli point of Aabc. Due to Theorem 5.2, the tree T' obtained
by removing edges ap and bp and adding edge pd has the same length as tree T' (where d is the
third point of the equilateral triangle Aabd constructed on the edge ab of triangle Aabc). Therefore,
finding the Steiner tree for n with a given topology is equivalent to finding the Steiner tree for T" with
terminals a and b and their connecting edges to ¢ replaced by a new terminal d connected to c.

The location of the Steiner point p is determined by constructing the equilateral triangle Aabd
on the edge ab of the triangle Aabe. If ¢ is a terminal, then which side to construct the equilateral
triangle on is clear, however if ¢ is a Steiner point, its location is not known so it is neccessary to check
both possibilities.

Melzak’s algorithm consists of two stages. In the first stage, which is known as the merging stage,
the topology is reduced as the number of terminals is reduced from n down to 2 and original terminals
are replaced by new terminals by the process described above. Every original terminal, except at most
one, is replaced during this stage. During this stage a number of subproblems are generated due to
the fact that if ¢ is a Steiner point, there are two possible choices for it’s location. Once the number
if terminals has been reduced to 2 and no more Steiner points remain in the altered topology, the
second stage takes over. The second stage is the reconstruction stage or expansion stage. Is starts by
connecting the two remaining terminals by a straight line. Then a Steiner tree is built up by replacing
the orginal terminals with Steiner points in the position of the Torricelli point for 3 of the vertices.
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Describing the algorithm in words does not make it obvious how it works. A formal definition of
the algorithm is given next, followed by an example in which the workings of the algorithm become a
lot clearer.

5.2.1 The Algorithm

The input for the algorithm is a set of n terminals and a topology. The output of the algorithm is the
Steiner tree for this topology.

Algorithm. 5.2 (Melzak’s algorithm).

1. while there exists one Steiner point do

Choose two terminals a and b which are both adjacent to the same Steiner point, p. Call the
third adjacent point to p, c. Compute the two points di and do which form an equilateral triangle
with a and b. Remove a and b from the topology.

If ¢ is a terminal then choose from dy and do the point such that the triangle Aabd; lies outside
of Aabc and replace p with d;.

Otherwise generate two new problems, one for di and one for da. In both of them replace the
Steiner point p by a terminal with coordinates d;. Handle the generated problems recursivly.
2. while tree T' does not contain all original terminals do
if there exists no Steiner points then
Connect the terminals by edges according to the current topology.

else [This is the backtracking step. Let a and b be the two terminals removed at this corresponding
step in STAGE 1, d be the inserted terminal, and c the adjacent vertex to d in the current topology
of the tree]

If the circle circumscribing Aabd intersects the line dc (except at d itself) then connect a and b
with the intersection point p and delete the line segement dp.

Otherwise STOP: the given topology admits no valid Steiner tree.

5.2.2 An Example

The workings of Melzak’s algorithm are much easier to understand by considering an example. We shall
now work through an example of Melzak’s algorithm with terminals: vy = (1,3),v2 = (2,1),v3 =
(5,4) and vq = (4,0.6), as shown in Figure 5.2(a) and topology: 2 Steiner points s; and sp with v;
and vy connected to s; and vz and v4 connected to sa, as shown in Figure 5.2(b).
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Figure 5.2: Melzak Algorithm: starting terminals and topology

STEP 1: Choose a = v1 and b = vy which are both adjacent to Steiner point, p. The third point
adjacent to p is also a Steiner point, so two subproblems are generated; the first with d; replacing p
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and the second with ds replacing p, as shown in Figure 5.3(a) and Figure 5.3(b). The new topology
for the subproblems is shown in Figure 5.3(c).
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Figure 5.3: Melzak Algorithm: STEP1

STEP 2: For each subproblem, as shown in Figure 5.3(a) and Figure 5.3(b), choose a = v5 and
b = v4 which are both adjacent to a Steiner point, p. The third point adjacent to p in each each
subproblem is the terminal v3. For each subproblem, either d; or ds is selected so that Aabd; lies
outside of Aabc. Therefore for the first subproblem the graph as shown in Figure 5.4(a) is selected
and for the second problem the graph as shown in Figure 5.4(c) is chosen. New topology has a = vs
and b = vy removed and replaced by vg connected to vs as shown in Figure 5.4(e
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Figure 5.4: Melzak Algorithm: STEP2

STEP 3: Now we proceed to the expansion phase. We start by joining the remaining two vertices
vy and vg for both of the subproblems as shown in Figure 5.5.
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Figure 5.5: Melzak Algorithm: STEP3

STEP 4: Using the subproblem as shown in Figure 5.5(b), after the second expansion phase, the
STOP criteria is met as one of the circumscribing circles, Aabd does not intersect the line dc.

Hence we shall consider the subproblem as shown in Figure 5.5(a). The last two terminals removed
were v4 and vs when they were replaced by terminal vg and point ¢ was v3. The circle circumscribing
Awvavsvg intersects the line vgvg at a point which is not vg so we make this interesection point p and
connect it to v4 and vs and delete the line segment pvg. This step is shown in the progression from
Figure 5.6(a) to Figure 5.6(b).
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The two terminals removed at the previous step were v; and v when they were replaced by
terminal vs and point ¢ was the Steiner point p. The circle circumscribing Avyvovs intersects the line
vsp at a point which is not vs so we call this intersection point p’ and connect p’ to v; and vy and
remove the line segment p'vs.

The resulting network is the Steiner tree for the given topology which is shown in Figure 5.6(d

HRR
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Figure 5.6: Melzak Algorithm: STEP4

5.2.3 Complexity of Melzak’s Algorithm

The complexity of Melzak’s algorithm for finding the Steiner tree for a given topology is bounded by
the number of Steiner points to the power of two because each Steiner point, depending on the nature
of its adjacent vertices, can generate up to two subproblems which need to be explored. Since the
number of Steiner points is at most n — 2, an upper bound for the complexity of Melzak’s algorithm
is O(2").

To find the minimal Steiner tree of a network using Melzak’s algorithm, it is necessary to find all
possible Steiner topologies for the network, then apply Melzak’s algorithm on each topology to find
all the Steiner trees and then finally calculate the length of each Steiner tree and the Steiner minimal
tree is the one which is the shortest.

5.3 A Numerical Algorithm

A function of one variable, f(z), is called convez if for any two points in its domain, x; and x, and
for any A where 0 < A < 1 then, f[Az1 + (1 —X)] < Af(x1) 4+ (1 — Af(x2)). If the inequality is scrict
then f(z) is called strictly convex.

If a function is convex then the second derivative f”(z) > 0 for all . The function will have only
one stationary point, where f'(z) = 0 and this point will be a minimum. A locally minimal point
is one which is a minimum over a subset of the domain. A globally minimal point is one that is the
minimal point over the entire domain of the function, hence it is the smallest of all locally minimal
points. If a function is strictly convex, this means that is has only one minimal point, so if a minimal
point is found it is the global minimal point. It is found by finding the point at which f/(z) = 0.

If a function of many variables f(z1,...,x,) is convex, then the same concept applies and the
minimal point is found by finding the point at which the first partial derivatives are all equal to zero.

5.3.1 The Algorithm

The length of a tree for a given topology is a convex function of the location of the Steiner points.
Therefore one way of finding the positions of Steiner points for a given topology is by setting the
first partial derivatives to zero. This results in a system of nonlinear equations as we saw for the
n = 3 case is the previous chapter, when we used derivatives to solve Fermat’s problem. Since it is a
system of nonlinear equations, a numerical method is required. It turns out that the function for the
tree length has complicated behaviour when the Steiner points get near to the optimum points which
means that usual numerical methods are inefficient. We will now consider an iterative procedure which
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was proposed by a mathematician called Smith, where at each step the positions of the Steiner points
are updated.

Algorithm. 5.3 (Smith’s Numerical Method). Let T be a Steiner topology with n terminals and k
Steiner points. Let s, = (zx,yx) be the k'™ Steiner point with Euclidean coordinates (xy,yy). Let the
coordinates of the points adjacent to s = (x,yr) be given by wj = (uj,vj). The summations below
are over j where [wj, s;| is an edge of the tree T'. At the ith step, i = 0,1, .... solve the system of 2n —4
linear equations.
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Smith proved that for all initial choices of Steiner point coordinates, (xg, yg), this method converges
to the unique optimum Steiner point coordinates. He also proved that the algorithm converges in a
way such that the total length of the tree after each iteration is always less than the previous iteration.

v .

5.3.2 An Example

We will consider the same example as used with Melzak’s algorithm. Recall the coordinates of the
terminals are: v; = (1,3),v2 = (2,1),v3 = (5,4) and v4 = (4,0.6), as shown in Figure 5.2(a) and the
starting topology is: 2 Steiner points; v; and ve connected to s; and vy and vg connected to so, as
shown in Figure 5.2(b).

We will start with approximations of the two Steiner points: s! = (z9,99) = (3,2), s =
(29,49) = (4,2) Which gives a starting tree as shown in Figure 5. 7 This starting tree has total length
L= /(1-3)2+ P4+ V/2=32+(1-22+/(B3-42+(2-2)2+ /(56— 4)2 2)% +

V(4 —4)2+ (0.6 — 2)2 = 8 286.
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Figure 5.7: Smith’s Numerical Algorithm: starting network

ITERATION 1: We start by deducing the 2n—4 = 2x4—4 = 4 linear equations. The Steiner point
s1 is adjacent to two terminals v; and v and the other Steiner point s3 so the points w; = (uj, vj) for
sY = (3,2) are: wy =v1 = (1,3), wg = vy = (1,3) and w; = sJ = (4,2).
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The Steiner point ss is adjacent to two terminals v and v4 and the Steiner point s1 so the points
w; = (uj,vj) for 3 = (4,2) are: wy =v3 = (5,4), wg = v4 = (4,0.6) and w3 = 9 = (3,2).
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This gives us our system of 4 linear equations to solve:
z} = 0.864044 + 0.464184x3
yi = 0.950995 + 0.464184y}
z3 = 2.356333 + 0.462642x1
ys = 1.025874 + 0.462642y;
The solution of which is: si = (z1,y1) = (2.493242,1.817499) and s3 = (23, 33) = (3.509812,1.866725).
This network is shown in Figure 5.8. Our tree after 1 itertaion has total length L' = 7.838 < L0 =

8.286.
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Figure 5.8: Smith’s Numerical Algorithm: after 1 iteration

5.3.3 Generalizing to Higher Dimensions

Smith’s numerical method does not offer any signficant advantage over the Melzak algorithm in the
Fuclidean plane. However its advantage is that it can be easily generalized to higher dimensions,
whereas the Melzak algorithm cannot.

5.4 The GeoSteiner Algorithm

The fasted algorithm known today which can be used to find solutions to the Euclidean Steiner tree
problem is called the GeoSteiner algorithm. The difficultly with exact algorithms, which we discussed
when considering Melzak’s algorithm, is that they are exponential; as the Steiner tree for every possible
Steiner topology has to found. This means that normally they can only be used to solve problems for
a small number of terminals. What is incredible about the GeoSteiner algorithm is that it can solve
problem with up to 2000 terminals; this is amazing as 18 years ago the maximum number of terminals
which was feasible to solve for was 29. The algorithm was derived by Warme, Winter and Zachariasen.
I will not explain how the algorithm works as it is very involved but Winter and Zachariasen explain
the algorithm in their book Large Euclidean Steiner Minimal Trees in an Hour, [8].

5.5 Summary

This chapter introduced a number of exact algorithms used to solve the Euclidean Steiner tree problem.

We started by looking at the 3 point algorithm which is used solve the n = 3 case of the Euclidean
Steiner problem. This then lead us on to consider Melzak’s algorithm which was the first ever exact
algorithm used to solve the Euclidean Steiner problem. We then looked at Smith’s numerical method
which is a numerical algorithm for solving the problem and has the advantage that it can be generalized
to higher dimensions of Euclidean space. We finished by mentioning the GeoSteiner algorithm which
is the best exact algorithm for solving the Euclidean Steiner problem known today.

The algorithms introduced in this chapter are exact algorithms because their object is to find
the exact solution to the problem. We have discussed how, due to the number of different possible
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Steiner topologies for a given input of terminals, the exact algorithms all run in exponential time.
The best exact algorithm (the GeoSteiner algorithm) can solve for up to 2000 terminals but if there
is a greater number of terminals to solve for, a different approach needs to be used. The next and
penultimate chapter of this report will discuss approzimation algorithms or heuristics which aim to
find an approximately good solution to the problem, but not the exact solution.
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Chapter 6

Heuristics

This chapter introduces a different approach for solving the Euclidean Steiner problem known as
heuristics or approximation algorithms. A heuristic is an algorithm which aims to get as close to the
optimal solution as possible without actually having to reach the optimum solution, in other words it
seeks to find an acceptably good solution.

In this chapter we will introduce the most common form of heuristics used to solve the Fuclidean
Steiner problem which are those that are based on first finding the Euclidean minimum spanning tree
and then improving the solution. This chapter starts by introducing the Steiner ratio which is a ratio
comparing the lengths of the Euclidean minimum spanning tree and the Euclidean Steiner tree for
given terminals. We will then go on to look at one of two heurstics which were introduced in 1998 in
a paper by Dreyrer and Overton, Two Heuristics for the Steiner Tree Problem, [10].

The main references for this chapter are [10, 19, 6].

6.1 The Steiner Ratio
6.1.1 STMs and MSTs

Recall that the minimum spanning tree (MST) for n vertices vy, ...,v, in the Euclidean plane is
the shortest spanning tree interconnecting all vertices v; using only edges [v;, v;], whereas the Steiner
minimal tree (SMT) is the shortest spanning tree interconnecting all vertices v; using edges connecting
both the vertices v; and also any other points in the Fuclidean plane.

Figure 6.1: The STM and MST for an equilateral triangle

If |E| denotes the total length of the edges connecting the set E of edges, then for any input of
terminals |[SMT| < |MST|. This is clear because Steiner minimal trees are chosen from a set of trees
which includes minimum spanning trees as a subset. We know there exists an algorithm, Kruskal’s
algorithm, which finds the minimum spanning tree of a given set of terminals in time of the order
O(|E|log|V]). As we are working with Euclidean minimum spanning trees, if n = |V/| is the number
of vertices, this simplifies to O(nlogn).

A heursitic for finding the Steiner minimal tree for n terminals is to find the minimal spanning tree.
This is clearly much computationally easier as the complexity for finding the minimal spanning tree is
O(nlogn) whereas the complexity for finding the Steiner minimal tree is exponential. One important
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aspect of a heuritic is that it is fast which we known to be true, another important quality of a good
heuristic is that the solution is close to the true optimal solution. We know that [SMT| < |MST|,
but we are interested in how much longer the MST is than the SMT. In other words we want to know

. |SMT|
the ratio r = (ST

In Figure 6.1, lets say that the length between each of the three vertices is 1. The the ratio r is

computed as follows. The length [MST| =1+ 1 = 2. The length of the |[SMT| = 3z where x is the

length from the Steiner point to one of the terminals. cos(30) = % == coi{??O) = % = % Hence
2

|SMT| = 3z = /3 and therefore r = If/[]\gﬂ = @

6.1.2 The Steiner Ratio

The Steiner ratio (SR) is the largest ratio of length of minimum spanning tree, |[MST| to length of
Steiner minimal tree, |[SMT| for all possible problems. If |MST(N)| denotes the minimum spanning
tree for the set of terminals N and |SMT(N)| denotes the Steiner minimal tree for the same set of
terminals N for all possible problems. Then we know for all possible IV:

ISMT(N)| < |MST(N)| (6.1)

It was conjectured in 1968 by Gilbert and Pollak that the largest ratio occurs for the n = 3 case
shown above where |MST|/|SMT| = \/3/2, so therefore SR = /3/2. The conjecture is proved in
Gibert and Pollak’s paper Steiner minimal trees, [9]. Hence, |M ST| never exceeds |SMT| by more
than /3/2 — 1 ~ 15.5%.

6.2 The Steiner Insertion Algorithm

Dreyrer and Overton introduce two polynomial time heuristics for solving the Euclidean Steiner prob-
lem in their paper, Two Heuristics for the Steiner Tree Problem, [10]. Their first heuristic, the Steiner
Insertion Algorithm, is the one we shall look at as it uses the idea of improving the minimal spanning
tree. It starts by finding the minimal spanning tree for the terminals and then makes the tree shorter
by inserting Steiner points between edges of the minimal spanning tree meeting at edges less than
120°.

The algorithm has a step in it where a local optimization algorithm is run. This algorithm finds
the optimal positions for the Steiner points given the topology of the tree. The local optimization
alogrithm used by Dreyer and Overton for their Steiner Insertion Algorithm is a primal-dual interior
point method for minimizaing a sum of Fuclidean vector norms which is not discussed here but is
explained in [7].

Let t.,ty,t. denote termials and let s,, denote an inserted Steiner point then the Steiner Insertion
Algorithm is as follows.

Algorithm. 6.1 (The Steiner Insertion Algorithm).

1. Find the minimal spanning tree.
2. FOR each edge connecting fixed points (t,t,) DO
(a) Find the edge (t,,t.) that meets (t;,t,) at the smallest angle, where t, can be either a fized
point or a Steiner point.

(b) IF this angle is less than 120° THEN

i. Place a new Steiner point s, on top of ty.
ii. Remove the edges (tz,ty) and (ty,t.). These edges will no longer be considered for the
loop of Step 2.
iii. Add the edges (tz,sn), (ty,sn) and (t,sy).
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(¢) Run the local optimization algorithm on the tree with its new toplogy

In order to see how this algorithm works we shall work through a simple case with 4 terminals.
We start with the unit square, so we have terminals ¢; = (0,0), t2 = (0,1), t3 = (1,0), t4 = (1,1).
One of the 4 possible MSTs is given by the edges (¢1,t2), (t2,t4), (t4,t3) as shown in Figure 6.2(b).

Starting with the edge (¢1,t2) we see the edge (t2,t4) meets it at an angle of 90°. Since 90° is
less than 120° an insertion of a Steiner point occurs so the edges (¢1,t2) and (t2,t4) are discarded and
replaced with the Steiner point s; on top of terminal ¢t and three edges (¢1,s1), (t2,s1) and (t4,s1)
as shown in Figure 6.2(c). Next the algorithm will insert a Steiner point between edges (t4,s1) and
(ts,t3) and replace edge (t4,t3) by (t3,s1) as shown in Figure 6.2(d). Finally the local optimization
algorithm will optimize this toplogy resulting in the Steiner tree as shown in Figure 6.2(e).

It is important to note here that it is not the Steiner Insertion algorithm which places the Steiner
point in their final position. The Steiner Insertion algorithms determines the topology of the SMT
and the local optimization algorithm finds the position of the Steiner points. In this example I just
chose the positioning of the Steiner points by eye.

(a) (b) () (d) ()

Figure 6.2: The Steiner Insertion Algorithm

6.3 Summary

This chapter introduced heuristics for solving the Euclidean Steiner problem.

We started by discussing how heuristics are different from the exact algorithms discussed in the
previous chapter as they aim to find an acceptably good solution in a quicker amount of time instead
of the exact solution. We then introduced the idea of the Steiner ratio, which is a ratio comparing
the lengths of Euclidean minimum spanning trees and Euclidean Steiner trees. Finally we looked at a
heuristic called the Steiner Insertion algorithm which is based on first finding the Euclidean minimum
spanning tree and then improving the solution by replacing edges meeting at less than 120° by Steiner
points.

The next and final chapter contains a summary of the ideas discussed in this report.
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Chapter 7

Conclusion

The Euclidean Steiner problem is a fascinating problem, the study of which draws on ideas from graph
theory, computational complexity and geometry as well as optimization. The aim of the Euclidean
Steiner problem is to find the tree of minimal length spanning a set of fixed points in the Euclidean
plane while allowing the addition of extra (Steiner) points. The Euclidean Steiner tree problem is
N P-hard which means there is currently no polytime algorithm for solving it.

The solution of the Euclidean Steiner problem is called a Steiner minimal tree. For every Steiner
topology there is a locally optimal solution known as a Steiner tree. The Steiner minimal tree is the
globally optimal solution, so finding it requires finding the shortest of all Steiner trees. Many basic
properties of Steiner trees are known which helps in the search for them. The main difficultly in
solving the problem is that the number of different Steiner topologies increases superexponentially
with n, where n is the number of terminals, to the extent that for just n = 6 there are thousands of
topologies to consider.

Exact algorithms for the Euclidean Steiner problem are algorithms which aim to find the exact
solution. The first exact algorithm to be derived was Melzak’s algorithm which was published in 1968.
Melzak’s algorithm finds the Steiner tree for each Steiner topology using geometric construction and
then selects the shortest one. Smith’s numerical method is similar to Melzak’s algorithm in that it
finds the Steiner tree for each Steiner topology so that the shortest one can be selected. The advantage
of Smith’s numerical method over Melzak’s algorithm is that it can be easily generalized to higher
dimensions whereas Melzak’s algorithm cannot. The difficultly with exact algorithms is that they run
in exponential time, as the Steiner tree for every possible Steiner topology has to found. Up until
18 years ago the maximum number of terminals which the problem could be solved for was 29. The
best exact algorithm today is the GeoSteiner algorithm which can solve the Euclidean Steiner problem
with up to 2000 terminals.

A different approach to solving the Euclidean Steiner problem is to use heuristics which are algo-
rithms that aim to get as close to the optimal solution as possible without actually having to reach
the optimum solution i.e. they seek to find acceptably good solutions quickly. The simplest heuristic
for the Euclidean Steiner problem is to find the Euclidean minimum spanning tree. The Steiner ratio
is the largest ratio of minimum spanning tree to Steiner minimal tree and its value is g which means
the minimum spanning tree is never more than 15.5% longer than the Steiner minimal tree. More
advanced heuristics start by finding the minimum spanning tree and then aim to improve the solution.
One heuristic used to solve the Euclidean Steiner problem is the Steiner Insertion algorithm which
works by first finding the minimum spanning tree and then replacing edges which make angles of less
than 120° by Steiner points.

In recent years the Euclidean Steiner problem has been used in many diverse applications ranging
from VLSI-layout which is the process of making integrated circuits otherwise known as chips to
phylogentic trees which are branching diagrams showing inferred evolutionary relationships amongst
species. Therefore interest in this problem is sure to continue to rise, motivating many more different
algorithms and interesting ways of solving it.
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