Michaelmas 2012, NT III/IV, Problem Sheet 5.

1. In an obvious generalization of the notion of an "algebraic integer", for a field L containing a ring R, we say that α is **integral over** R if it satisfies a monic polynomial equation with coefficients in R.

Furthermore, R is said to be **integrally closed** if every element in the quotient field of R which is integral over R, is already contained in R. (For example, \mathbb{Z} and $\mathbb{Z}[i]$ are integrally closed in \mathbb{Q} and $\mathbb{Q}(i)$, respectively, while $\mathbb{Z}[\sqrt{-3}]$ is not integrally closed in $\mathbb{Q}(\sqrt{-3})$ —why?)

With these definitions show that every UFD is integrally closed.

- 2. Find how many solutions (a, b) there are (a) with $a, b \in \mathbb{Z}$ and (b) with $a, b \in \mathbb{N}$ to the following equations. (c) In each case give (just) one of the solutions, if there is one.
 - $a^2 + b^2 = 2^3 \times 7^4 \times 37^5 \times 41,$ (i) $a^2 + b^2 = 27 \times 41 \times 43,$ (ii) $a^{2} + 25b^{2} = 4 \times 29 \times 113^{4},$ $a^{2} + 7b^{2} = 8 \times 23 \times 43,$ (iii) $(iv)^1$ $a^{2} + 1b^{2} = 8 \times 23 \times 43,$ $a^{2} - ab + b^{2} = 3 \times 7 \times 61,$ $a^{2} - 5b^{2} = 11,$ $a^{2} - 2b^{2} = 21,$ $a^{2} + 2b^{2} = 3^{14} \times 43^{10},$ $a^{2} + 11b^{2} = 3^{12} \times 5^{16},$ $a^{2} + 12b^{2} = 3^{12} \times 5^{16},$ $(v)^{2}$ $(vi)^3$ (vii) (viii) (ix) $a^2 + 7b^2 = 4 \times 23^r \times 43^s, \ r, s \in \mathbb{Z}^{>0}.$ $(x)^{1}$
 - [(¹) Note that for any solution $(a + b\sqrt{-7})/2 \in \mathcal{O}_{\mathbb{Q}(\sqrt{-7})}$.
 - (2) Note that $a^2 ab + b^2 = (a + \omega b)(a + \overline{\omega} b)$, where $\omega = \frac{-1 + \sqrt{-3}}{2}$. (3) It may be useful to find a solution (indeed several) to $a^2 5b^2 = 1$.]
- 3. Let p and q be distinct odd prime integers. Given that there is at least one solution, find how many solutions there are to

$$a^2 + 2b^2 = p^{11}q^{13}$$

with a and b in \mathbb{Z} .

4. Let $p(\neq 11)$ be an odd prime integer which is not prime in $\mathbb{Z}\left|\frac{1+\sqrt{-11}}{2}\right|$. How many solutions are there to

$$X^2 + 11Y^2 = 4p^{23}$$

where X and Y are positive integers not divisible by p?

- 5. Find all the integer solutions to $X^2 + 11 = Y^3$. [Make sure you work in a UFD.]
- 6. Show that $\mathbb{Z}[\sqrt{-7}]$ contains elements α and β such that $\alpha \tilde{\alpha} = 11$ and $\beta \tilde{\beta} = 23$. For given positive integers s and t, how many integer solutions are there to

$$X^{2} + 7Y^{2} = 3^{4}11^{s}23^{t} ?$$

[You may assume that $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ is a UFD.]