Michaelmas 2012, NT III/IV, Problem Sheet 5.

1. In an obvious generalization of the notion of an "algebraic integer", for a field L containing a ring R, we say that α is integral over R if it satisfies a monic polynomial equation with coefficients in R.

Furthermore, R is said to be integrally closed if every element in the quotient field of R which is integral over R, is already contained in R. (For example, \mathbb{Z} and $\mathbb{Z}[i]$ are integrally closed in \mathbb{Q} and $\mathbb{Q}(i)$, respectively, while $\mathbb{Z}[\sqrt{-3}]$ is not integrally closed in $\mathbb{Q}(\sqrt{-3})$-why?

With these definitions show that every UFD is integrally closed.
2. Find how many solutions (a, b) there are (a) with $a, b \in \mathbb{Z}$ and (b) with $a, b \in \mathbb{N}$ to the following equations. (c) In each case give (just) one of the solutions, if there is one.
(i) $a^{2}+b^{2}=2^{3} \times 7^{4} \times 37^{5} \times 41$,
(ii) $a^{2}+b^{2}=27 \times 41 \times 43$,
(iii) $a^{2}+25 b^{2}=4 \times 29 \times 113^{4}$,
(iv) ${ }^{1} \quad a^{2}+7 b^{2}=8 \times 23 \times 43$,
(v) ${ }^{2} \quad a^{2}-a b+b^{2}=3 \times 7 \times 61$,
$(\mathrm{vi})^{3} \quad a^{2}-5 b^{2}=11$,
(vii) $\quad a^{2}-2 b^{2}=21$,
(viii) $a^{2}+2 b^{2}=3^{14} \times 43^{10}$,
(ix) $a^{2}+11 b^{2}=3^{12} \times 5^{16}$,
$(\mathrm{x})^{1} \quad a^{2}+7 b^{2}=4 \times 23^{r} \times 43^{s}, r, s \in \mathbb{Z}^{>0}$.
$\left[{ }^{1}\right)$ Note that for any solution $(a+b \sqrt{-7}) / 2 \in \mathcal{O}_{\mathbb{Q}(\sqrt{-7})}$.
$\left({ }^{2}\right)$ Note that $a^{2}-a b+b^{2}=(a+\omega b)(a+\bar{\omega} b)$, where $\omega=\frac{-1+\sqrt{-3}}{2}$.
${ }^{3}$) It may be useful to find a solution (indeed several) to $a^{2}-5 b^{2}=1$.]
3. Let p and q be distinct odd prime integers. Given that there is at least one solution, find how many solutions there are to

$$
a^{2}+2 b^{2}=p^{11} q^{13}
$$

with a and b in \mathbb{Z}.
4. Let $p(\neq 11)$ be an odd prime integer which is not prime in $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$. How many solutions are there to

$$
X^{2}+11 Y^{2}=4 p^{23}
$$

where X and Y are positive integers not divisible by p ?
5. Find all the integer solutions to $X^{2}+11=Y^{3}$. [Make sure you work in a UFD.]
6. Show that $\mathbb{Z}[\sqrt{-7}]$ contains elements α and β such that $\alpha \widetilde{\alpha}=11$ and $\beta \widetilde{\beta}=23$. For given positive integers s and t, how many integer solutions are there to

$$
X^{2}+7 Y^{2}=3^{4} 11^{s} 23^{t} ?
$$

[You may assume that $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ is a UFD.]

