Elementary Number Theory and Cryptography,

 M'mas 2011, Problem Sheet 9 (primitive roots, quadratic residues).1. (a) Find all primes less than 20 for which 3 is a primitive root.
(b) If g is a primitive root modulo 37 , which of the numbers g^{2}, g^{3}, \ldots, g^{8} are primitive roots modulo 37 ?
(c) Suppose g is a primitive root modulo p. Try to find a rule for deciding whether g^{k} is a primitive root modulo p.
Prove that this rule is correct.
2. (a) Use index calculus to solve the equation

$$
x^{13} \equiv 15 \quad(\bmod 37)
$$

You may use that, for the primitive root $g=2$ modulo 37 , one has

$$
I(3)=26, \quad I(5)=23
$$

(b) (*) Using the above, or otherwise, try to find a closed expression for a solution of the equation

$$
4^{k} x^{13} \equiv 15 \quad(\bmod 37)
$$

for any $k \geqslant 0$.
[Hint: It may be useful to determine $I(4)$.]
3. If a and b are related via $a+b \equiv 0(\bmod p)$, how are the indices $I(a)$ and $I(b)$ related?
4. Show that there is no primitive root modulo 8 .

More generally, show that there is no primitive root modulo 2^{n} for $n \geqslant 3$.
5. (a) Produce a list of all the QRs and NRs modulo the prime 23.
(b) Is 7^{11} a QR modulo 23? Justify your answer.
(c) Determine

$$
\left(\frac{2^{k} \cdot 5^{\ell}}{23}\right)
$$

for arbitrary $k, \ell \in \mathbb{Z}_{>0}$.
6. Without writing down a solution, determine whether each of the following congruences has a solution in integers.
(a) $x^{2} \equiv-1(\bmod 5987)$,
(b) $x^{2} \equiv 6780(\bmod 6781)$,
(c) $x^{2}+14 x-35 \equiv 0(\bmod 337)$,
(d) $x^{2}-64 x+943 \equiv 0(\bmod 3011)$.
7. Use Gauss's lemma from the lectures to evaluate each of the Legendre symbols below (i.e., find the integer ν such that $\left.\left(\frac{a}{p}\right)=(-1)^{\nu}\right)$.
(a) $\left(\frac{8}{11}\right)$
(b) $\left(\frac{7}{13}\right)$
(c) $\left(\frac{5}{19}\right)$
(d) $\left(\frac{6}{31}\right)$.
8. Use the Quadratic Reciprocity Law to compute the following Legendre symbols:
(a) $\left(\frac{65}{101}\right)$
(b) $\left(\frac{101}{2011}\right)$
(c) $\left(\frac{111}{641}\right)$
(d) $\left(\frac{31706}{43789}\right)$.
9. Is 3 a quadratic residue modulo (the prime) 1234567891 ?

