Elementary Number Theory and Cryptography, M'mas 2011, Problem Sheet 9 (primitive roots, quadratic residues).

- 1. (a) Find all primes less than 20 for which 3 is a primitive root.
 - (b) If g is a primitive root modulo 37, which of the numbers $g^2, g^3, \ldots,$ g^8 are primitive roots modulo 37?
 - (c) Suppose g is a primitive root modulo p. Try to find a rule for deciding whether q^k is a primitive root modulo p. Prove that this rule is correct.
- 2. (a) Use index calculus to solve the equation

 $x^{13} \equiv 15 \pmod{37}.$

You may use that, for the primitive root $g = 2 \mod 37$, one has

I(3) = 26, I(5) = 23.

(b) (*) Using the above, or otherwise, try to find a closed expression for a solution of the equation

 $4^k x^{13} \equiv 15 \pmod{37}$

for any $k \ge 0$. [Hint: It may be useful to determine I(4).]

- 3. If a and b are related via $a + b \equiv 0 \pmod{p}$, how are the indices I(a) and I(b) related?
- 4. Show that there is no primitive root modulo 8. More generally, show that there is no primitive root modulo 2^n for $n \ge 3$.
- 5. (a) Produce a list of all the QRs and NRs modulo the prime 23.
 - (b) Is 7^{11} a QR modulo 23? Justify your answer.
 - (c) Determine

$$\left(\frac{2^k \cdot 5^\ell}{23}\right)$$

for arbitrary $k, \ell \in \mathbb{Z}_{>0}$.

- 6. Without writing down a solution, determine whether each of the following congruences has a solution in integers.

 - (a) $x^2 \equiv -1 \pmod{5987}$, (b) $x^2 \equiv 6780 \pmod{6781}$,
 - (c) $x^2 + 14x 35 \equiv 0 \pmod{337}$,
 - (d) $x^2 64x + 943 \equiv 0 \pmod{3011}$.
- 7. Use Gauss's lemma from the lectures to evaluate each of the Legendre symbols below (i.e., find the integer ν such that $\left(\frac{a}{p}\right) = (-1)^{\nu}$).

(a)
$$\left(\frac{8}{11}\right)$$
 (b) $\left(\frac{7}{13}\right)$ (c) $\left(\frac{5}{19}\right)$ (d) $\left(\frac{6}{31}\right)$

8. Use the Quadratic Reciprocity Law to compute the following Legendre symbols:

(a)
$$\left(\frac{65}{101}\right)$$
 (b) $\left(\frac{101}{2011}\right)$ (c) $\left(\frac{111}{641}\right)$ (d) $\left(\frac{31706}{43789}\right)$.

9. Is 3 a quadratic residue modulo (the prime) 1234567891?