Elementary Number Theory and Cryptography,

 Michaelmas 2011, Problem Sheet 8. (RSA attack, orders mod p)1. (Factoring with high probability.) [A calculator is probably needed for (a).]
(a) Suppose you are given the public RSA key $(n, e)=(93433,1071)$, and you obtain the information that the decryption key is $d=10831$.
Putting $m=d \cdot e-1$, for which $m=(101100010000000010000000)_{2}$ is the binary expansion, compute $\rho:=3^{m / 16}(\bmod n)$.
(b) Using the ρ from part (a) above, or else assuming that a possible solution is $\rho=501650$, find a factorization of n.
2. (Summation formula for Euler's φ-function.)

Let $d_{1}, d_{2}, \ldots, d_{r}$ be the (positive) divisors of $n \geqslant 1$. Then

$$
\varphi\left(d_{1}\right)+\varphi\left(d_{2}\right)+\cdots+\varphi\left(d_{r}\right)=n
$$

[Hint: Show it first for n a prime power, then use multiplicativity.]
3. Let $p=31$.
(a) For any (positive) divisor d of $\varphi(p)$, find

$$
S_{p}(d)=\left\{1 \leqslant a \leqslant p-1 \mid \operatorname{ord}_{p}(a)=d\right\}
$$

(b) Using part (a), determine $\sum_{d \mid p} \# S_{p}(d)$.
(c) Find all primitive roots modulo p.
4. Compute the following orders $\operatorname{ord}_{p}(a)$ modulo a prime p (try to economise your effort by avoiding to compute all powers):
(a) for $p=13$ and $a=5, a=7$ and $a=9$;
(b) for $p=641$ and $a=11$.
5. (Computing the order modulo any integer m.)

For any integers a and $m>0$ with $\operatorname{gcd}(a, m)=1$ we define the order of a modulo m as

$$
\operatorname{ord}_{m}(a)=\min \left\{e \in \mathbb{Z}_{>0} \mid a^{e} \equiv 1 \quad(\bmod m)\right\}
$$

(a) Compute the following values:

$$
\operatorname{ord}_{21}(2), \quad \operatorname{ord}_{25}(2), \quad \operatorname{ord}_{32}(3), \quad \operatorname{ord}_{14}(3)
$$

(b) Show that $\operatorname{ord}_{m}(a)$ is always a divisor of $\varphi(m)$.
6. (a) Create a table of indices modulo 17 using the primitive root 3 .
(b) Use this table to solve the congruence $13 x \equiv 6(\bmod 17)$.
(c) With the help of the above table, solve the congruence

$$
5 x^{7} \equiv 7 \quad(\bmod 17)
$$

7. Let p be an odd prime number.
(a) Determine

$$
1+2+3+\cdots+(p-1) \quad(\bmod p)
$$

(b) Distinguishing the cases $p=3$ and $p>3$, determine

$$
1^{2}+2^{2}+3^{2}+\cdots+(p-1)^{2} \quad(\bmod p)
$$

(c) By experimenting with a few small primes, or otherwise, make a guess as to what the value of

$$
1^{k}+2^{k}+3^{k}+\cdots+(p-1)^{k} \quad(\bmod p)
$$

is, for any $k \geqslant 1$.
[You may want to distinguish two essentially different cases.]
(*) (d) Prove your guess from (c) if $\operatorname{gcd}(k, p-1)=1$ or $p-1$. [Other cases?]

