Elementary Number Theory and Cryptography,

 Michaelmas 2011, Problem Sheet 7. (k th roots mod n, RSA attacks)1. (a) Find 88^{-1}, the (multiplicative) inverse of 88 , in the ring $\mathbb{Z} / 703 \mathbb{Z}$.
(b) Find an $x \in \mathbb{Z}$ such that

$$
x^{647} \equiv 64 \quad(\bmod 703)
$$

[Hint: Part (a) and Euler-Fermat may come in handy here, and presumably you will need another idea.]
2. The encoded message ("ciphertext") 5859 was obtained using the RSA algorithm with public key $(n, e)=(11413,7467)$. Find the original message ("plaintext", here a number <11413) from which it was obtained.
[Hint: Factorize 11413 and then produce a decryption exponent.]
3. Let $n=p q$, where p and q are distinct odd primes. Suppose $a \in \mathbb{Z}$ is coprime to n.
(a) Show that $a^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod p)$ and $a^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod q)$, and deduce that $a^{\frac{1}{2} \varphi(n)} \equiv 1(\bmod n)$.
(b) Using the above (or otherwise), show that if $e d \equiv 1\left(\bmod \frac{1}{2} \varphi(n)\right)$ then

$$
a^{d e} \equiv a \quad(\bmod n)
$$

[Note that this implies that for the RSA algorithm we could also work with $\frac{1}{2} \varphi(n)$ rather than with $\varphi(n)$.]
4. (a) You are given $n=442931$ and $\varphi(n)=441600$.

Factor n into a product of two primes using this data.
(b) $\left(^{*}\right)$ Suppose you are given $n=p q r$ as a product of 3 primes, together with $\varphi(n)$ and the sum of the primes dividing n, i.e. $\psi(n):=p+q+r$. Devise an algorithm to retrieve the three primes from this data.
Try your algorithm on the following data:

$$
n=7935412033, \quad \varphi(n)=7923420000, \quad \text { and } \quad \psi(n)=6015
$$

[Hint: You can assume Cardano's formula for the solutions of a cubic equation: the equation $x^{3}+b x+c=0(\dagger)$ has a solution of the form
$x=\sqrt[3]{-\frac{c}{2}+\sqrt[2]{\left(\frac{c}{2}\right)^{2}+\left(\frac{b}{3}\right)^{3}}}+\sqrt[3]{-\frac{c}{2}-\sqrt[2]{\left(\frac{c}{2}\right)^{2}+\left(\frac{b}{3}\right)^{3}}}$.
Note that, by a change of variable $x \mapsto x-a_{2} / 3$, you can transform any cubic of the form $x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$ into the form (\dagger). And don't be afraid to use complex numbers on the way...]
5. (a) Use the Fermat factorization method to write $n=3525283$ as a product of two primes.
(b) Show that if $x^{2} \equiv y^{2}(\bmod n)$ and $x \not \equiv \pm y(\bmod n)$, then $\operatorname{gcd}(x+y, n)$ is a non-trivial factor of n.
(c) $\left(^{*}\right)$ For the composite number $n=642401$, you are given the information that

$$
516107^{2} \equiv 7 \quad(\bmod n)
$$

and

$$
187722^{2} \equiv 2^{2} \cdot 7 \quad(\bmod n)
$$

Try to factor n by hand using this information.
[Hint: Ideas from Fermat factorization may be useful, as well as part (b).]

