Elementary Number Theory and Cryptography, Michaelmas 2011, Problem Sheet 4 (Congruences).

1. (a) Show that $(a+10 \cdot b)^{2} \equiv a^{2}(\bmod 10)$.
(b) Using (a), or otherwise, prove that any number that is a square must have one of the following for its units digit: $0,1,4,5,6,9$.
(c) How many different remainders for integer squares modulo 100 can you find? Why are there fewer such with units digit 0 or 5 than for the remaining four possible units digits? [Part (a) may be helpful.]
2. (a) Solve the linear congruence

$$
3 x \equiv 7 \quad(\bmod 11)
$$

(b) Find an integer x such that

$$
33 x \equiv 1 \quad(\bmod 101)
$$

and find one such that

$$
29 x \equiv 1 \quad(\bmod 101)
$$

3. (i) Show that $2,4,6, \ldots, 2 m$ constitutes a complete set of residues modulo m, provided m is odd.
(ii) Show that $1^{2}, 2^{2}, 3^{2}, \ldots, m^{2}$ is not a complete set of residues modulo m, if $m>2$.
4. Denote by $\varphi(n)$ Euler's φ-function, which is defined as

$$
\varphi(n)=\#\{a \in \mathbb{Z} \mid \operatorname{gcd}(a, n)=1 \text { and } 0<a<n\}
$$

Determine $\varphi(n)$ for the following n :
(a) $n=275$;
(b) $n=2^{7}$;
(c) $n=404$.
5. Show that, for $n>4$ composite, that

$$
(n-1)!\equiv 0 \quad(\bmod n)
$$

Compare this statement with the one from Wilson's Theorem.
6. Show that, for a prime p such that $p \equiv 3(\bmod 4)$, one has

$$
\left(\frac{p-1}{2}\right)!\equiv \pm 1 \quad(\bmod p)
$$

7. For any prime p different from 2 and 5 , prove that p divides infinitely many of the numbers

$$
1,11,111,1111, \ldots
$$

[Hint: try to show this statement first for (their multiples) $9,99,999, \ldots$]
8. (a) Show that, for a given prime p, one has

$$
a^{p} \equiv a \quad(\bmod p),
$$

for any integer (i.e., regardless of whether a is coprime to p or not).
(b) Show that if p is prime then

$$
\binom{p-1}{k} \equiv(-1)^{k} \quad(\bmod p)
$$

for $0 \leqslant k \leqslant p-1$.
I. Challenge [hard!]:

Someone misremembers the statement of Fermat's Little Theorem, as saying that $a^{n+1} \equiv a(\bmod n)$ holds for all a if n is prime. Describe the set of integers n for which this fact is indeed true.

