Elementary Number Theory and Cryptography,

 Michaelmas 2011, Problem Sheet 2 (divisibility, Euclidean algo).1. Show the following statements for integers a, b, c :
(a) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$ then $\operatorname{gcd}(a, b c)=1$.
[Hint: write the gcd's explicitly in terms of the input data.]
(b) If $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.
[Hint: first determine $\operatorname{gcd}\left(a, b^{2}\right)$.]
(c) If $a \mid b c$ then $a \mid \operatorname{gcd}(a, b) \operatorname{gcd}(a, c)$.
2. In each of the following, decide whether the statement is true or false for positive integers a, b, c, and give either a proof or a counterexample.
(a) If $a b \mid a c$ then $b \mid c$.
(b) If $b^{2} \mid c^{3}$ then $b \mid c$.
(c) $\operatorname{gcd}(a, b)^{2}=\operatorname{gcd}\left(a^{2}, b^{2}\right)$.
3. (a) Show that, for any odd number b, one has $8 \mid b^{2}-1$.
(b) Is the relation \nmid ("does not divide") transitive? (Justify your answer.)
(c) The well-known Fibonacci sequence $\left\{F_{n}\right\}_{n \geqslant 0}$ is defined as follows: $F_{0}=1, F_{1}=1$, and, for any index $n \geqslant 2, F_{n}=F_{n-1}+F_{n-2}$. Prove that the gcd of each pair of consecutive Fibonacci numbers equals 1.
4. Devise the following variant of the Euclidean algorithm: given integers a, b, define the "closest integer" of a / b to be the number q for which one has $-\frac{1}{2}<\frac{a}{b}-q \leqslant \frac{1}{2}$.
(a) Show that q is indeed uniquely defined by this.
(b) Define r as the remainder $a-b q$ and determine the interval in which r lies.
(c) Show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
(d) Show also that a successive application of the above process has to terminate and also that it computes the gcd of a and b.
5. For a, b positive integers consider the set $S(a, b):=\{a x+b y \mid x, y \in \mathbb{Z}\}$ of all integer linear combinations of a and b.
(a) Show that $\operatorname{gcd}(a, b)$ is the smallest positive element in this set.
[Hint: show first that this smallest positive integer divides $\operatorname{gcd}(a, b)$, and then show the converse.]
(b*) Suppose you are given integers x_{0} and y_{0} satisfying the identity $\operatorname{gcd}(a, b)=a x_{0}+b y_{0} \quad$ (why can you assume that they exist?).
i) Give infinitely many (different) pairs (x, y) of integers, in terms of x_{0}, y_{0}, a and b, which satisfy $\operatorname{gcd}(a, b)=a x+b y$.
ii) Can you find a complete set of such pairs?
6. Let a, b and n be positive integers.
(a) Show that we have

$$
\operatorname{gcd}(a n, b n)=n \cdot \operatorname{gcd}(a, b)
$$

[Hint: you can use the results of the previous question; or else use induction on the size of $a+b$.]
(b) Using the above statement, prove that
if $n \mid a$ and $n \mid b$ then $n \mid \operatorname{gcd}(a, b)$.
7. (a) Find a factorisation of 4153076928 into primes "by hand".
(b) Find a factorisation of 1030301 using "pure thought".
(c) Can you find one for the non-prime 4294049777? (A calculator is probably not good enough!)

