Elementary Number Theory and Cryptography, Michaelmas 2011, Problem Sheet 2 (divisibility, Euclidean algo).

- 1. Show the following statements for integers a, b, c:
 - (a) If gcd(a, b) = 1 and gcd(a, c) = 1 then gcd(a, bc) = 1. [Hint: write the gcd's explicitly in terms of the input data.]
 - (b) If gcd(a, b) = 1 then $gcd(a^2, b^2) = 1$. [Hint: first determine $gcd(a, b^2)$.]
 - (c) If $a \mid bc$ then $a \mid \gcd(a, b) \gcd(a, c)$.
- 2. In each of the following, decide whether the statement is true or false for *positive* integers a, b, c, and give either a proof or a counterexample.
 - (a) If $ab \mid ac$ then $b \mid c$.
 - (b) If $b^2 \mid c^3$ then $b \mid c$.
 - (c) $gcd(a,b)^2 = gcd(a^2,b^2)$.
- 3. (a) Show that, for any *odd* number b, one has $8 \mid b^2 1$.
 - (b) Is the relation \notin ("does not divide") transitive? (Justify your answer.) (c) The well-known Fibonacci sequence $\{F_n\}_{n \ge 0}$ is defined as follows: $F_0 = 1, F_1 = 1$, and, for any index $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$. Prove that the gcd of each pair of *consecutive* Fibonacci numbers equals 1.
- 4. Devise the following variant of the Euclidean algorithm: given integers a, b, define the "closest integer" of a/b to be the number q for which one has $-\frac{1}{2} < \frac{a}{b} q \leq \frac{1}{2}$.
 - (a) Show that q is indeed uniquely defined by this.
 - (b) Define r as the *remainder* a bq and determine the interval in which r lies.
 - (c) Show that gcd(a, b) = gcd(b, r).
 - (d) Show also that a successive application of the above process has to terminate and also that it computes the gcd of a and b.
- 5. For a, b positive integers consider the set $S(a,b) := \{ax + by \mid x, y \in \mathbb{Z}\}$ of all integer linear combinations of a and b.
 - (a) Show that gcd(a, b) is the smallest positive element in this set. [Hint: show first that this smallest positive integer *divides* gcd(a, b), and then show the converse.]
 - (b*) Suppose you are given integers x₀ and y₀ satisfying the identity gcd(a, b) = ax₀ + by₀ (why can you assume that they exist?).
 i) Give infinitely many (different) pairs (x, y) of integers, in terms of x₀, y₀, a and b, which satisfy gcd(a, b) = ax + by.
 ii) Can you find a complete set of such pairs?
- 6. Let a, b and n be positive integers.(a) Show that we have
 - $gcd(an, bn) = n \cdot gcd(a, b).$

[Hint: you can use the results of the previous question; or else use induction on the size of a + b.]

- (b) Using the above statement, prove that if $n \mid a$ and $n \mid b$ then $n \mid \gcd(a, b)$.
- 7. (a) Find a factorisation of 4153076928 into primes "by hand".
 - (b) Find a factorisation of 1030301 using "pure thought".
 - (c) Can you find one for the non-prime 4294049777 ? (A calculator is probably not good enough!)