Elementary Number Theory and Cryptography,

 Michaelmas 2011, Problem Sheet 1 (induction, divisibility).1. Establish the following formulae for any positive integer n, using mathematical induction:

$$
\begin{align*}
1+3+5+\cdots+(2 n-1) & =n^{2} \tag{1}\\
1^{3}+2^{3}+3^{3}+\cdots+n^{3} & =\left(\frac{n(n+1)}{2}\right)^{2} \tag{2}\\
1^{3}-2^{3}+3^{3}-\cdots-(2 n)^{3}+(2 n+1)^{3} & =(n+1)^{2}(4 n+1) . \tag{3}
\end{align*}
$$

Deduce from these that each cube is the difference of two squares.
2. Prove by induction that, for $n \geqslant 1$, one has
(a) 8 divides $5^{2 n}+7$;
(b) $13 \mid 4^{2 n+1}+3^{n+2}$;
(c) $5 \mid 3^{3 n+1}+2^{n+1}$.
3. Recall the distributive law for the integers: for any integers a, b, c, we have

$$
a(b+c)=a b+a c
$$

Use the distributive law to deduce the relation $(-1) \cdot(-1)=+1$.
4. Let a, b, c be integers, where $c \neq 0$. Show that
(a) if $c \mid a$ then $c \mid a \cdot b$,
(b) if $c \mid a$ and $c \mid b$ then $c \mid m a+n b$ for any integers m, n.
(c) if $a \mid b$ and $b \mid a$, then $a= \pm b$ (i.e. $a=b$ or $a=-b$).
5. Show that, for any positive integers a and n one has
(a) the following divisibility (be careful not to divide by 0)

$$
a-1 \mid a^{n}-1
$$

(b) and, keeping the above in mind, show that for $a>1$

$$
\operatorname{gcd}\left(\frac{a^{n}-1}{a-1}, a-1\right)=\operatorname{gcd}(a-1, n)
$$

[Hint: It may help to view a first as an indeterminate.]
6. (a) Compute the greatest common divisor $d=(455,1235)$ of the two numbers 455 and 1235 by hand. Find integers x, y such that $d=$ $455 x+1235 y$.
(b) Compute the greatest common divisor $d=(2743,3587)$ of the two numbers 2743 and 3587 by hand. Find integers x, y such that $d=$ $2743 x+3587 y$.
7. For $n \geqslant 0$, let $F_{n}=2^{2^{n}}+1$, the n-th Fermat number.

Show that $\left(F_{n}, F_{n-1}\right)=1$ for any n.
[Hint: Try to find factors of the expression $F_{n}-2$.]
More generally, show that $\left(F_{n}, F_{k}\right)=1$ for any k such that $n \neq k$.
8*. (a) Show that, for any integers a, b, c, d, one has that

$$
12 \mid(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) .
$$

[Hint: show that both 3 and 4 divide the right hand side.]
(b) Prove that among any 10 consecutive positive integers at least one is relatively prime to the product of all the others.

