Elementary Number Theory and Cryptography, Easter 2012, Problem Sheet XM.

1. (a) Show or disprove, for p a prime number:
if $p \mid b$ and $p \mid b^{2}+c^{2}$, then $p \mid c$.
(b) Let b, c be odd, then show that $16 \mid b^{4}+c^{4}-2$.
(c) Show by induction that

$$
21 \mid 4^{n+1}+5^{2 n-1}
$$

2. (a) Find $d=\operatorname{gcd}(777,497)$ and write d as a linear combination of 777 and 497.
(b) Find the (multiplicative) inverse 17^{-1} in the ring $\mathbb{Z} / 101 \mathbb{Z}$.
(c) Show that there are infinitely many primes of the form $6 k-1$.
(d) (i) Define Riemann's zeta function $\zeta(s)$.
(ii) State the Riemann Hypothesis.
3. (a) Compute $13^{422}(\bmod 31)$.
[Carefully formulate any result you use.]
(b) Find a primitive root modulo 19.
(c) Solve the congruence

$$
x^{17} \equiv 2 \quad(\bmod 31)
$$

4. (a) (i) Define Euler's φ-function (or "totient" function).
(ii) Determine $\varphi(3024)$. [Carefully formulate any result you use.]
(iii) Give a formula for $\varphi\left(p^{r}\right)$ for a prime power $p^{r}(r>0)$, and write down a proof for it.
(b) Give infinitely many solutions, if any, of the simultaneous congruence

$$
\begin{aligned}
& x \equiv 15 \quad(\bmod 23) \\
& x \equiv 7 \quad(\bmod 29) .
\end{aligned}
$$

(c) Determine whether the congruence has a solution

$$
x^{2}-3 x+6 \equiv 0 \quad(\bmod 107) .
$$

(d) Formulate the Discrete Logarithm Problem.
(e) (i) Given the pair (n, e) with $\operatorname{gcd}(e, \varphi(n))=1$, find an inverse to the $\operatorname{map} E: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$, given by $m \mapsto m^{e}(\bmod n)$.
(ii) For the RSA key (n, e) with modulus $n=187$ and encryption exponent $e=23$, find a decryption exponent.
5. (a) Define the Legendre symbol for an odd prime p.
(b) (i) Formulate Gauss's lemma about the Legendre symbol.
(ii) Use Gauss's lemma to compute $\left(\frac{5}{11}\right)$.
(c) (i) State the quadratic reciprocity law.
(ii) Compute the Legendre symbol

$$
\left(\frac{101}{691}\right)
$$

[Justify your steps carefully.]
(d) Show that, for $p>3$ prime, one has

$$
6(p-4)!\equiv 1 \quad(\bmod p)
$$

[Carefully formulate any result you use.]

