Elementary Number Theory and Cryptography, Easter 2012, Problem Sheet XM.

- 1. (a) Show or disprove, for p a prime number: if $p \mid b$ and $p \mid b^2 + c^2$, then $p \mid c$.
 - (b) Let b, c be odd, then show that $16 \mid b^4 + c^4 2$.
 - (c) Show by induction that

$$21 \mid 4^{n+1} + 5^{2n-1} \, .$$

- 2. (a) Find $d = \gcd(777, 497)$ and write d as a linear combination of 777 and 497.
 - (b) Find the (multiplicative) inverse 17^{-1} in the ring $\mathbb{Z}/101\mathbb{Z}$.
 - (c) Show that there are infinitely many primes of the form 6k 1.
 - (d) (i) Define Riemann's zeta function ζ(s).
 (ii) State the Riemann Hypothesis.
- 3. (a) Compute $13^{422} \pmod{31}$.

[Carefully formulate any result you use.]

- (b) Find a primitive root modulo 19.
- (c) Solve the congruence

$$x^{17} \equiv 2 \pmod{31}.$$

- 4. (a) (i) Define Euler's φ -function (or "totient" function).
 - (ii) Determine $\varphi(3024)$. [Carefully formulate any result you use.]
 - (iii) Give a formula for $\varphi(p^r)$ for a prime power p^r (r > 0), and write down a proof for it.
 - (b) Give infinitely many solutions, if any, of the simultaneous congruence

 $x \equiv 15 \pmod{23}$

 $x \equiv 7 \pmod{29}.$

(c) Determine whether the congruence has a solution

 $x^2 - 3x + 6 \equiv 0 \pmod{107}$.

- (d) Formulate the Discrete Logarithm Problem.
- (e) (i) Given the pair (n, e) with $gcd(e, \varphi(n)) = 1$, find an inverse to the map $E : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, given by $m \mapsto m^e \pmod{n}$.
 - (ii) For the RSA key (n, e) with modulus n = 187 and encryption exponent e = 23, find a decryption exponent.
- 5. (a) Define the Legendre symbol for an odd prime p.
 - (b) (i) Formulate Gauss's lemma about the Legendre symbol.
 - (ii) Use Gauss's lemma to compute $\left(\frac{5}{11}\right)$.
 - (c) (i) State the quadratic reciprocity law.
 - (ii) Compute the Legendre symbol

$$\left(\frac{101}{691}\right)$$

[Justify your steps carefully.]

(d) Show that, for p > 3 prime, one has

 $6(p-4)! \equiv 1 \pmod{p}.$

[Carefully formulate any result you use.]