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Abstract. We consider the moduli spaces Md(`) of a closed linkage with n

links and prescribed lengths ` ∈ Rn in d-dimensional Euclidean space. For
d > 3 these spaces are no longer manifolds generically, but they have the

structure of a pseudomanifold.

We use intersection homology to assign a ring to these spaces that can
be used to distinguish the homeomorphism types of Md(`) for a large class

of length vectors in the case of d even. This result is a high-dimensional

analogue of the Walker conjecture which was proven by Farber, Hausmann
and the author.

1. Introduction

Configuration spaces of closed linkages in Euclidean space modulo isometry group
have occured in many contexts in recent years. Planar linkages can easily be vi-
sualised and the topology of the resulting moduli spaces are now well understood,
culminating in the proof of the Walker conjecture by Farber, Hausmann and the
author in [3, 20]. Roughly this conjecture states that the cohomology of the linkage
space detects the length vector of the linkage. By a length vector we simply mean
an element ` = (`1, . . . , `n) ∈ Rn such that all entries are positive. The i-th entry
`i describes the length of the i-th link.

For linkages in 3-dimensional Euclidean space, the resulting moduli spaces occur
naturally in algebraic geometry and symplectic geometry, see e.g. [17, 14], and the
cohomology rings have been calculated in Hausmann and Knutson [11]. Using this
description of cohomology, the analogue of the Walker conjecture was proven in [3],
with the single exception that for n = 4 there exist two different length vectors
whose moduli spaces are both the 2-sphere.

Much less is known for linkages in higher-dimensional Euclidean spaces. For linkages
in 5-dimensional space, Foth and Lozano obtained analogous results of Kapovich
and Millson [14] in a quaternion setting rather than a complex one. Kamiyama [13]
obtained an Euler characteristic formula for equilateral linkages in 4-dimensional
space, and more recently homology calculations were obtained in [21].

The moduli space we are interested in is

Md(`) =

{
(x1, . . . , xn) ∈ (Sd−1)n

∣∣∣∣∣
n∑
i=1

`ixi = 0

}/
SO(d)
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where SO(d) acts diagonally on the product of spheres. In particular we want
to know how the topology of Md(`) depends on the length vector `. Permuting
the coordinates of ` does not change the topology as we can simply permute the
coordinates of Md(`). It also turns out that small changes of ` do not change
the topology, provided that ` does not admit a collinear configuration, that is, if
M1(`) = ∅. If this is the case, we call the length vector generic.

Indeed, the non-generic length vectors are the boundaries of so-called chambers,
connected open subsets of Rn such that any two length vectors in the same chamber
admit homeomorphic moduli spaces.

In general, if two length vectors `, `′ are in different chambers, even after permuting
coordinates, it does not necessarily follow that Md(`) and Md(`

′) are not homeo-
morphic. In fact, Schoenberg [19] showed that for d = n the moduli space Md(`)
is either a topological disc or empty, from which it can be seen that for d = n− 1
the moduli spaces are empty or topologically a sphere. The case where the moduli
space is empty is represented by the chamber where one coordinate `j is bigger than
the sum of all other `i, so in all other cases we always get the same moduli space.
Notice that the case d > n reduces to the case d = n, as the extra dimensions in
Rd cannot be taken advantage of by linear dependence of the x1, . . . , xn.

In the case d < n−1 the topology of the moduli space does depend on the chamber,
as can be seen from the homology calculations in [21]. The main result of this paper
shows that for a large class of length vectors the topology of the moduli space does
recover the chamber of the length vector.

Theorem 1.1. Let d ≥ 4 be even, `, `′ ∈ Rn be generic, d-normal length vectors.
If Md(`) and Md(`

′) are homeomorphic, then ` and `′ are in the same chamber up
to a permutation.

The notion of d-normal is defined in Section 2, in view of Schoenberg’s result it
should be pointed out that for n = d + 1 there are exactly two chambers up to
permutation which contain d-normal length vectors, one with empty moduli space
and one where the moduli space is a sphere. If n is large compared to d, d-normality
is more common, and we would expect the ratio of all d-normal length vectors in
Rn by all length vectors in Rn to converge to 1.

The statement of the theorem is known to be true for d = 2, as it follows from the
proof of the Walker conjecture in [3, 20], and for d = 3, as was shown in [3]. Every
generic length vector is 2-normal, and there is only one chamber up to permutation
so that its length vectors are not 3-normal.

Homology calculations are not enough to obtain Theorem 1.1, and in fact the cases
d = 2, 3 were obtained using cohomology. If we do not form the quotient by SO(d)
and look instead at a configuration space Ed(`) (so that Md(`) = Ed(`)/SO(d)),
cohomology is again enough to detect the chamber of `, see Farber and Fromm [2].
A similar result for chain spaces (see Section 2) was obtained in [4].

It is clear from the calculations in [21] that ordinary cohomology is not enough
for d ≥ 4. Instead we use intersection homology in this paper. By letting the
perversity vary with the degree of the intersection homology group, we can use
the intersection pairing to assign a ring to each moduli space which behaves very
similar to the cohomology ring in the case d = 2. For even d ≥ 4 we can explicitly
describe this ring and use it to prove Theorem 1.1.
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The idea of the ring based on intersection homology is roughly the following. Given
J ⊂ {1, . . . , n} with n ∈ J we can form a new length vector `J ∈ Rn−|J|+1 by
merging the links corresponding to the elements of J into one link. This leads to an
inclusionMd(`J) ⊂Md(`). Furthermore, if K∩J = {n}, the intersectionMd(`J)∩
Md(`K) =Md(`J∪K) is transversal. Each J has a perversity p|J| such that we have
an element [Md(`J)] ∈ Ip|J|H∗(Md(`)) so that these elements behave well with the
intersection pairing of Goresky-MacPherson [8, 9]. For even d, these elements turn
out to span an exterior algebra which is invariant under homeomorphism. The
condition of d-normality ensures that Md(`J) is not a disc in which case it would
be invisible for homology.

In a forthcoming paper we prove Theorem 1.1 for odd d ≥ 5.

2. Linkage spaces and intersection homology

In order to study Md(`) it is useful to consider the chain space

Cd(`) =

{
(x1, . . . , xn−1) ∈ (Sd−1)n−1

∣∣∣∣∣
n−1∑
i=1

`ixi = −`ne1

}
where e1 = (1, 0, . . . , 0) ∈ Rd is the usual first coordinate vector. If we let SO(d−1)
act on Sd−1 by fixing the first coordinate, we see that SO(d− 1) acts diagonally on
Cd(`) and

Md(`) ∼= Cd(`)/SO(d− 1).

We also define

Nd(`) =

{
(x1, . . . , xn) ∈ (Sd−1)n

∣∣∣∣∣
n∑
i=1

`ixi = 0

}/
O(d)

so that Nd(`) ∼=Md(`)/(Z/2).

Definition 2.1. Let ` ∈ Rn be a length vector. A subset J ⊂ {1, . . . , n} is called
`-short, if ∑

j∈J
`j <

∑
i/∈J

`i.

It is called `-long, if the complement is `-short, and `-median, if it is neither `-short
nor `-long. The length vector is called generic, if there are no `-median subsets.

For m ∈ {1, . . . , n} the length vector is called m-dominated, if `m ≥ `i for all
i = 1, . . . , n.

After permuting the coordinates we can always assume that ` is n-dominated. In
fact, we can also assume that ` is ordered, meaning that `1 ≤ `2 ≤ · · · ≤ `n. For
generic ` we can also assume `n > `n−1, as we can slightly increase the last entry
without leaving the chamber.

If ` is m-dominated and k ≤ n− 3, we write

Sk(`) = {J ⊂ {1, . . . , n} |m ∈ J, |J | = k + 1, J is `-short}.

Note that a length vector ` can be m-dominated by more than one m ∈ {1, . . . , n}.
In this case we will form Sk(`) using the maximal m which dominates `. Again,
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for generic ` we can assume that m is unique. The cardinalities of these sets are
denoted by

ak(`) = |Sk(`)|.

If J ⊂ {1, . . . , n}, we define the hyperplane

HJ =

(x1, . . . , xn) ∈ Rn
∣∣∣∣∣∣
∑
j∈J

xj =
∑
j /∈J

xj


and let

H = Rn>0 −
⋃

J⊂{1,...,n}

HJ ,

where Rn>0 = {(x1, . . . , xn) ∈ Rn |xi > 0}. Then H has finitely many components,
which we call chambers. It is clear that a length vector ` is generic if and only if
` ∈ H.

It is shown in [10] that if ` and `′ are in the same chamber, then Cd(`) and Cd(`′)
are O(d − 1)-equivariantly diffeomorphic. In particular, Md(`) and Md(`

′) are
homeomorphic.

It is easy to see that two m-dominated generic length vectors `, `′ are in the same
chamber if and only if Sk(`) = Sk(`′) for all k = 0, . . . , n− 3.

Definition 2.2. Let ` ∈ Rn be a length vector and d ≥ 2. Then ` is called
d-normal, if ⋂

J∈Ld(`)

J 6= ∅

where Ld(`) are the subsets J ⊂ {1, . . . , n} with d− 1 elements that are `-long. If
Ld(`) = ∅, we let the intersection above be {1, . . . , n}.

So for a length vector to be not d-normal, we need a long subset J ⊂ {1, . . . , n}
with d− 1 elements such that J does not contain an element m with `m maximal.
Because then we can replace any element of J with m to get another `-long subset
with d− 1 elements, and the intersection of these sets will be empty.

If ` is ordered, then ` is d-normal if and only if {n− d+ 1, n− d+ 2, . . . , n− 1} is
not `-long. For a generic length vector this is equivalent to Sn−d(`) = ∅.
It follows from the definition that every length vector with n ≥ 2 is 2-normal.
Furthermore, there is only one chamber up to permutation which contains non-
3-normal length vectors, namely the one containing1 ` = (0, . . . , 0, 1, 1, 1). In [3],
4-normal was called normal.

In the case d = n − 1, there are only two chambers up to permutation which
contain d-normal length vectors, namely the ones containing ` = (1, . . . , 1, n − 2)
and `′ = (0, . . . , 0, 1). If n is large compared to d, d-normality gets more common,
and we would expect the ratio of all d-normal length vectors in Rn by all length
vectors in Rn to converge to 1.

1Technically, this ` is not a length vector because of 0-entries. We interpret a 0-entry in a
length vector as ε > 0 so small that decreasing it does not change the chamber.
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For d = 2, 3 and ` generic, the spaces Md(`) are closed manifolds, but for d ≥
4 this is no longer the case. But as we will see in Section 3, these spaces are
pseudomanifolds for n > d. For the precise definition of a pseudomanifold, we
refer the reader to [9]. Since we need intersection homology below, we do recall
some of the definitions in order to agree on notation. Given an n-dimensional
pseudomanifold Xn, there is a stratification

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−2 ⊂ Xn.

A (Goresky-MacPherson) perversity is a function p : {2, . . . , n} → {0, 1, . . .} such
that p(2) = 0 and p(i) ≤ p(i+ 1) ≤ p(i) + 1 for all i = 2, . . . , n− 1.

Simple examples are the zero-perversity 0 and the top perversity t with t(i) = i−2.

For a perversity p the intersection homology IpH∗(X) is the homology of a sub-
complex IpC∗(X) of the ordinary chains C∗(X). If X admits a PL-structure, a
PL-chain ξ ∈ Cr(X) is called p-allowable, if its support |ξ| ⊂ X satisfies

dim(|ξ| ∩Xn−k) ≤ r − k + p(k)

for all k = 2, . . . , n. The subcomplex IpC∗(X) then consists of those ξ for which ξ
and ∂ξ are p-allowable. For more details see [8, 9] and [16].

For normal pseudomanifolds, that is, those for which the link of each stratum is
connected, there are canonical isomorphisms

ItH∗(X) ∼= H∗(X) and I0H∗(X) ∼= Hn−∗(X),

see [16, §4.5]. It follows from Lemma 3.4 below that Md(`) is a normal pseudo-
manifold whenever it is a pseudomanifold.

One of the features of intersection homology is that it satisfies Poincaré duality
when using field coefficients. We will also need a Lefschetz duality version for
which we require pseudomanifolds with boundary. Basically, a pseudomanifold with
boundary X is such that X − ∂X is an n-dimensional pseudomanifold, and ∂X is
an (n − 1)-dimensional pseudomanifold which has a neighborhood in X stratified
homeomorphic to ∂X × [0, 1), see [7, §4]. For a compact, orientable n-dimensional
pseudomanifold with boundary we then get isomorphisms

IpHi(X; F) ∼= It−pHn−i(X, ∂X; F)

for all i = 0, . . . , n, assuming that F is a field, see [7, §4].

3. Linkage spaces as pseudomanifolds

We want to describe the stratification of Md(`). This is basically given by Mk(`)
where k < d. However, the natural map Mk(`) → Md(`) is not injective. But it
induces an injection Nk(`)→Md(`).

Definition 3.1. Let x = [x1, . . . , xn] ∈ Md(`). Then the rank of x is defined as
the dimension of the vector space spanned by x1, . . . , xn.

Clearly, rank (x) ≤ d, and since the xi are linearly dependent, we have rank (x) ≤
n − 1. We will however be more interested in the case n > d, as for n ≤ d we get
that Md(`) is contractible or empty.

Furthermore, if k = rank (x), then x is in the image of the natural map Mk(`) →
Md(`).
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Lemma 3.2. Let ` ∈ Rn be a length vector, and k < d. Then there is an inclusion
Nk(`) ⊂Md(`), and Nk(`) consists of all elements x ∈Md(`) with rank (x) ≤ k.

Proof. First note that if x ∈Md(`) has rank k, we can find an element A ∈ SO(d)
such that Ax1, . . . , Axn span Rk×{0} ⊂ Rd. Hence x is in the image of the natural
map Mk(`) → Md(`). Now assume that x, y ∈ Mk(`) have the same image in
Md(`). Then rank (x) = rank (y) = m ≤ k for some m.

We can then assume that x1, . . . , xn span Rm ×{0} and also y1, . . . , yn span Rm ×
{0}. Now if there is an A ∈ SO(d) with Axi = yi for all i = 1, . . . , n, we get that
A keeps Rm invariant, and therefore A|Rm ∈ O(m). But this means that x and y
represent the same element in Nk(`). �

In order to understand the local structure of Md(`), choose x ∈ Md(`) with
rank (x) = k ≤ d ≤ n, and represent this point by (x1, . . . , xn). Note that if
d = n, we have k < n, as the coordinates of x are linearly dependent.

Now rotate x1 into position e1 ∈ Rd. Let us assume that k ≥ 2, which is always
the case if ` is generic. Then there is another element not contained in R × {0},
and after reordering, we may assume it is x2, now using a rotation from SO(d− 1)
(fixing the first coordinate), we can assume that x2 ∈ S1 − S0. Repeating this, we
can represent x by an element (x1, . . . , xn) with

x1 = e1

x2 ∈ S1 − S0

...

xk ∈ Sk−1 − Sk−2.

Since rank (x) = k, we get that xk+1, . . . , xn ∈ Sk−1 ⊂ Sd−1. If k < n − 1, we
can assume that the xk+1, . . . , xn are not collinear: If they are, they cannot be
multiples of xk, since

∑
`ixi = 0 and x1, . . . , xk−1 ∈ Rk−1. In that case we can

just replace xk with xk+1.

Also, if k = n − 1, it follows that xk and xk+1 are not collinear by the same
argument.

We can therefore assume that after a permutation of coordinates we have x1 = e1,
xi ∈ Si−1−Si−2 for i = 2, . . . , k, xk+1, . . . xn ∈ Sk−1 and xn−1, xn are not collinear.
Furthermore, the group SO(d− k) fixes all xi.

Let us define

dnd = (n− 3)(d− 1)− (d− 2)(d− 3)

2
,(1)

which is the dimension of Md(`) for n > d by Lemma 3.3 below. It then follows
easily that the codimension of Nd−k(`) in Md(`) is

cnd,k = k(n− d) +
k(k − 1)

2
(2)

for k = 2, . . . , d− 2.

Lemma 3.3. Let ` ∈ Rn be a length vector with n > d ≥ 3. Let x ∈Md(`) satisfy
rank (x) ≥ d− 1. Then x has a neighborhood homeomorphic to Rdn

d .
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Proof. We can use the description for x given above the lemma. That is, we can
represent x by an element (x1, . . . , xn) such that

x1 = e1

x2 ∈ S1 − S0

...

xd−1 ∈ Sd−2 − Sd−3,

and xd, . . . , xn ∈ Sd−1 with xn−1 and xn not collinear. If rank (x) = d − 1, we
actually have all xd, . . . , xn ∈ Sd−2, otherwise we can assume that xd ∈ Sd−1−Sd−2.

In order to describe points near x, we have to consider points near (x1, . . . , xn), so
we can let them vary in small discs Dd−1. But notice that for nearby points y we
always get rank (y) ≥ rank (x). After a rotation, we therefore get

y1 = e1

y2 ∈ S1 − S0

...

yd−1 ∈ Sd−2 − Sd−3.

Furthermore, yd, . . . , yn ∈ Sd−1, and there are no further rotations possible. The
point y2 can therefore freely vary in a small disc D1, y3 in a small disc D2, etc. The
points yd, . . . , yn can vary in Sd−1, but only up to yn−2 we can vary them freely.
The last two yn−1, yn have to connect the endpoint of the linkage given by the first
n− 2 elements to the origin. Since we can assume yn−1 and yn to be not collinear,
this is possible near x, and there is a (d − 2)-dimensional sphere of possibilities.
The dimension of the neighborhood is therefore

1 + 2 + · · ·+ (d− 2) + (d− 1)(n− 1− d) + (d− 2)

which is easily seen to be (n− 3)(d− 1)− (d−2)(d−3)
2 = dnd . �

The following lemma was proven in [5] in the case d = 5.

Lemma 3.4. Let ` ∈ Rn be a length vector, and 2 ≤ k < d − 1 ≤ n − 1. If
rank (x) = k, then x has a neighborhood homeomorphic to

Rm(n,k) × ((Rd−k)n−1−k)/SO(d− k),

where SO(d− k) acts diagonally on (Rd−k)n−1−k in the standard way, and

m(n, k) =
(k − 1)k

2
+ (n− k − 1)(k − 1)− 1.

Furthermore, if k < m ≤ d − 2, the points in this neighborhood corresponding to
points in Nm(`) are in

Rm(n,k) × ((Rm−k)n−1−k)/O(m− k).

Proof. The proof is similar to the proof of Lemma 3.3. Represent x by an element
x̄ = (x1, . . . , xn−1) ∈ Cd(`) with xi ∈ Si − Si−1 for i = 1, . . . , k − 1 and xi ∈ Sk−1

for i = k, . . . , n−1. By the Slice Theorem for compact Lie groups acting on smooth
manifolds there is a neighborhood of this point equivariantly diffeomorphic to

SO(d− 1)×SO(d−k) Tx̄Cd(`)/Tx̄(SO(d− 1) · x̄).
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For Tx̄Cd(`) note we can vary each of xi for i = 1, . . . , n − 3 within Sd−1, and the
points xn−2 and xn−1, which we can assume to be non-collinear, connect up the

points `ne1 ∈ Rd and y =
∑n−3
i=1 `ixi. This gives rise to a sphere of dimension d−2.

Quotiening the tangent space by the tangent space of the orbit means that there
is no variation for x1, x2 only varies one-dimensionally in the first two coordinates,
up to xk−1 which can vary (k − 1)-dimensionally in the first k variables. We can
therefore write

Tx̄Cd(`)/Tx̄(SO(d− 1) · x̄) = R× R2 × · · · × Rk−1 × (Rd−1)n−k−2 × Rd−2,

with SO(d − k) acting diagonally in the usual way on the last (d − k) coordinates
of (Rd−1)n−k−2 × Rd−2.

We can therefore write this as

Tx̄Cd(`)/Tx̄(SO(d− 1) · x̄) = Rm(n,k) × (Rd−k)n−k−1

with SO(d−k) acting diagonally on the second factor only. Passing to the SO(d−1)-
quotient of the slice neighborhood gives the result for points of rank k.

To get points in Nm(`) we simply have to make sure the last d − m coordi-
nates stay 0. We have to pass to O(m − k), since ((Rm−k)n−1−k)/SO(m − k) →
((Rd−k)n−1−k)/SO(d− k) is not injective. �

If we write

L(m,n) = {(x1, . . . , xn) ∈ (Rm)n | |x1|2 + · · ·+ |xn|2 = 1}/SO(m)

with SO(m) acting diagonally on (Rm)n, we see that a neighborhood of a point of
rank k is given by Rm(n,k) times the open cone C(L(d− k, n− k− 1)), with higher
rank elements fitting nicely into the stratification of L(d−k, n−k−1) coming from
the rank of the xi in Rd−k.

This implies that for d ≤ n − 1 the space Md(`) carries the structure of a normal
pseudo-manifold with stratification given by

∅ ⊂ N2(`) ⊂ N3(`) ⊂ · · · ⊂ Nd−2(`) ⊂Md(`).

We would like to give this pseudo-manifold a piecewise-linear structure. To see
that this is possible, note that Cd(`) is a real-analytic manifold with SO(d − 1)
acting real-analytically. The submanifolds Ck(`) for k < d are not SO(d − 1)-
invariant, but the SO(d − 1)-orbits of these sets are easily seen to be subanalytic
SO(d − 1)-invariant closed subsets of Cd(`). By [12, Thm.B] Cd(`) can be given a
SO(d − 1)-equivariant triangulation which gives Md(`) a triangulation such that
each Nk(`) is a subcomplex.

4. The intersection ring of a pseudomanifold

Let X be a compact, oriented n-dimensional pseudomanifold. In [8, 9] Goresky-
MacPherson define the intersection pairing

∩ : IpHi(X)× IqHj(X)→ IrHi+j−n(X)

where p, q and r are perversities such that p + q ≤ r, and show that it does not
depend on the stratification of X. Furthermore, I0Hn(X) contains a fundamental
class [X] which serves as a unit.
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Now let k,m > 0 and assume that p0, . . . ,pk is a sequence of perversities such that
for all i, j ≥ 0 with i+ j ≤ k we have pi + pj ≤ pi+j . For 0 ≤ r ≤ k define

Ip·H
rm(X) = IprHn−rm(X).

The notation p· is used as short-hand for the sequence of perversities. For r+s ≤ k
the intersection pairing induces a multiplication

· : Ip·Hrm(X)× Ip·Hsm(X)→ Ip·H
(r+s)m(X)

which turns

Ip·H
∗m(X) =

k⊕
r=0

Ip·H
rm(X)

into a graded ring with unit, where we treat products with gradings r + s > k as
zero. We call this ring the intersection ring of X with respect to p· and m. If pr is
the 0-perversity for all r ≥ 0, we may choose k =∞.

The subring generated by the elements of Ip·H
m(X) is also a graded ring with

unit, and we call it the reduced intersection ring of X with respect to p· and m. We
denote it by

Ip·H̃
∗m(X).

If a pseudomanifold admits a stratification whose strata have only certain codi-
mensions, a perversity only has to consider these codimensions. The relevant per-
versities for intersection homology of Md(`) are therefore given by non-decreasing
sequences of integers (0, p2, p3, . . . , pd−2) for which we have

p2 ≤ 2(n− d)− 1

pi+1 − pi ≤ n− d+ i

for all i = 2, . . . , d− 3. The top perversity is thus given by

tn = (0, cnd,2 − 2, . . . , cnd,d−2 − 2).

We know from [21, Prop.7.1] that Hdn
d
(Md(`)) ∼= Z, so there is a fundamental class

that we can write as [Md(`)].

Also, if J ⊂ {1, . . . , n− 1} we can define a new length vector `J ∈ Rn−|J| given by

`J = (`i1 , . . . , `in−1−|J| , `n + `j1 + · · ·+ `j|J|),

where J = {j1, . . . , j|J|} and {i1, . . . , in−1−|J|} denotes the complement of J in
{1, . . . , n− 1}.
We then get a natural inclusionMd(`J) ↪→Md(`), and provided that |J | ≤ n−d−1
we have a fundamental class [Md(`J)] ∈ H

d
n−|J|
d

(Md(`J)).

Note that if J ∪ {n} is long, we get Md(`J) = ∅ and the fundamental class is just
0.

Definition 4.1. Let 0 ≤ k ≤ n− d− 1. The perversity pk is defined as

pk = (0, 2k, 3k, . . . , (d− 2)k).

Lemma 4.2. Let ` ∈ Rn be a generic length vector and J ⊂ {1, . . . , n− 1} satisfy
|J | ≤ n− d− 1. Then [Md(`J)] represents a well-defined homology class

[Md(`J)] ∈ Ip|J|H
d

n−|J|
d

(Md(`)).



10 DIRK SCHÜTZ

Proof. We need to show that

dim(Md(`J) ∩Nd−k(`)) ≤ dimMd(`j)− codimNd−k(`) + k|J |
for all k = 2, . . . , d− 2. Since Md(`J) ∩ Nd−k(`) = Nd−k(`J), this is equivalent to
showing

(n− |J | − 3)(d− k − 1)− (d− k − 2)(d− k − 3)

2
≤

(n− |J | − 3)(d− 1)− (d− 2)(d− 3)

2
− k(n− d)− k(k − 1)

2
+ k|J |.

A straightforward calculation shows that this is indeed an equality. �

The relevant intersection ring for Md(`) is obtained using m = d − 1 and the
perversities p0, . . . ,pn−d−1. To simplify notation and since we are mainly interested
in the reduced intersection ring we will write

IH∗(d−1)(Md(`))

for the reduced intersection ring.

The relevant intersection homology groups are given by IpkHdn−k
d

(Md(`)), and we

have

dn−kd + dn−jd − dnd = d
n−(k+j)
d

and the perversities satisfy

pj + pk = pj+k

for k, j = 0, . . . , n− d− 1. Recall that products with j + k ≥ n− d are considered
as 0.

The fundamental class [Md(`)] ∈ IH0(Md(`)) is the unit of both the intersection
ring and the reduced intersection ring, which follows immediately from [8, Thm.1].

Remark 4.3. For d = 3 we can use the 0-perversity and the intersection ring
consists of the cohomology ringH∗(M3(`)) which has been calculated by Hausmann
and Knutson [11].

We want to describe the reduced intersection ring of Md(`) for even d ≥ 4 and
d-normal `. To do this we need a combinatorial description of the chamber.

Definition 4.4. Let ∆ be a finite abstract simplicial complex, that is, a col-
lection of subsets of a set {x1, . . . , xk} which is closed under subsets. The ex-
terior face ring Λk[∆] over the commutative ring k is the quotient of the exte-
rior algebra Λk[X1, . . . , Xk] by the ideal generated by elements Xi1 · · ·Xim where
{xi1 , . . . , xim} /∈ ∆.

Note that for a length vector ` ∈ Rn the collection

S·(`) =

n−3⋃
k=1

Sk(`)

is an abstract simplicial complex with vertex set S1(`).

The main theorem about the intersection ring of Md(`) is then given by the fol-
lowing.
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Theorem 4.5. Let d ≥ 4 be even, ` ∈ Rn a generic, d-normal length vector. Then
the reduced intersection ring of Md(`) with rational coefficients is isomorphic to
the exterior face ring

IH(d−1)∗(Md(`);Q) ∼= ΛQ[S·(`)].

We need to show that the generators of the exterior face ring correspond exactly to
[Md(`{j})], where {j} ∈ S1(`), and that there are no other relations than the ones
described by S·(`). Assuming this, we can now prove Theorem 1.1.

Proof of Theorem 1.1. We can assume that both ` and `′ are ordered. The re-
duced intersection rings are homeomorphism invariants by [9, §5], so ΛQ[S·(`)] ∼=
ΛQ[S·(`′)]. By [1, Exercise 5.12] there is an isomorphism of simplicial complexes
S·(`) ∼= S·(`′). But as ` and `′ are ordered, it follows that S·(`) = S·(`′), compare
[3, Lemma 3]. Therefore ` and `′ are in the same chamber. �

5. A Morse function for linkage spaces

In [21, §3] the function F : Cd(`)→ R given by

F (z1, . . . , zn−1) = p1(zn−1),

where p1 : Rd → R is projection to the first coordinate, was shown to be a SO(d−1)-
invariant Morse-Bott function whose critical manifolds consist of

• Cd(`−) as the absolute minimum, `− = (`1, . . . , `n−2, `n − `n−1).
• Cd(`+) as the absolute maximum, `+ = (`1, . . . , `n−2, `n + `n−1).

• Sd−2
J , a (d − 2)-dimensional sphere for every subset J ⊂ {1, . . . , n − 2}

for which J ∪ {n} is `-short and J ∪ {n − 1, n} is `-long, whose index is
(n− 3− |J |)(d− 1).

The critical spheres SJ can be visualized as in Figure 1 with the first n − 2 links
collinear, and those corresponding to elements of J pointing in the same direction.
It was assumed in [21, §3] that ` was n-dominated, but this only ensures that

Figure 1. The critical manifold SJ obtained by rotating this con-
figuration via SO(d− 1).

(generically) `n > `n−1 so that `− is a length vector with all entries positive.
However, the techniques of [21, §3] also work if we allow negative entries in a length
vector.



12 DIRK SCHÜTZ

We want to replace F by an equivariant Morse-Bott function F̄ , all of whose critical
manifolds are (d− 2)-spheres. If n = 3, then Cd(`) is a (d− 2)-sphere or empty, so
we can use n = 3 or 4 as an induction start.

Now consider the Morse-Bott function F : Cd(`)→ R for n > 4. By the equivariant
Morse Lemma, see [22, §4], there is an equivariant normal bundle around the abso-
lute maximum and the absolute minimum so that F is just the sum of quadratics
in the normal direction of this bundle. Furthermore, the normal bundle is (non-
equivariantly) trivial by [21, Lm.3.3]. As the absolute maximum and minimum are
just lower dimensional chain spaces, there exist equivariant Morse-Bott functions
F1 : Cd(`−)→ R and F2 : Cd(`+)→ R with only (d−2)-spheres as critical manifolds
on the maximum and minimum.

Let χ1, χ2 : Cd(`) → [0, 1] be smooth functions so that χ1 is 1 near Cd(`−) and 0
outside the Morse-neighborhood of Cd(`−), and χ2 is 1 near Cd(`+) and 0 outside
the Morse-neighborhood of Cd(`+). As we only have to define them on the normal
bundle, we can assume them to be SO(d− 1) invariant. We can extend F1 and F2

to the normal bundle neighborhood by ignoring the normal direction. Note that
then F +Fi turns into a Morse-Bott function on the normal bundle neighborhood,
with critical manifolds that of Fi (i = 1, 2). Then define F̄ : Cd(`)→ R by

F̄ (x) = F (x) + ε(χ1(x)F1(x) + χ2(x)F2(x)).

By choosing ε > 0 small enough we get that the critical points of F̄ are exactly
the critical manifolds of F1, F2 and the critical manifolds SJ from F . Furthermore,
all indices remain the same except for those of F2, where the index is increased by
d− 1 coming from the normal direction.

To get the number of critical manifolds of a given index, observe that the number
of critical manifolds does not depend on d ≥ 3, and in the case d = 3 we get a
perfect Morse function on M3(`). For d > 3 we get that the Morse-Bott function
is perfect in the sense that the number of critical manifolds of index k(d−1) agrees
with the (2k)-th Betti number of the moduli spaceM3(`), and there are no critical
manifolds of other indices. The Betti numbers of M3(`) were determined in [11]
and [17], in particular they can be expressed in the ak(`).

We can furthermore assume that different critical manifolds have different values
under F̄ . Choosing a sequence of regular values xi such that the interval (xi−1, xi)
contains exactly one critical value, we get a filtration

∅ ⊂ M0 ⊂M1 ⊂ · · · ⊂ Mr =Md(`)

by Mi = f−1((−∞, xi]), where f :Md(`)→ R is induced by F̄ .

Note that Mi is a pseudomanifold with boundary, and to understand the inter-
section homology of the pair (Mi,Mi−1), we need to understand the intersection
homology of the normal bundle of the critical manifold Sd−2 relative to its bound-
ary.

Let N(Sd−2) denote the normal bundle of the critical manifold Sd−2 ⊂ Cd(`) and
let p ∈ Sd−2. The normal space at p is denoted by Np(S

d−2).

Lemma 5.1. SO(d − 1) acts transitively on Sd−2, furthermore, for p ∈ Sd−2 the
stabilizer subgroup is isomorphic to SO(d−2), and we have Np(S

d−2) is SO(d−2)-
equivariantly homeomorphic to (Rd−1)n−3, where SO(d− 2) acts diagonally on the
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n−3 copies of Rd−1, and the action of SO(d−2) on Rd−1 fixes the first coordinate,
and is the standard action on the remaining d− 2 coordinates.

Proof. We start with the critical manifold SJ from F . Elements in SJ have rank
2, and can be visualized as in Figure 1, the transitivity and stabilizer subgroup
statements are therefore clear. The normal directions are obtained by varying the
first n−3 links in Sd−1, keeping the (n−2)-th link in S1 (assuming all coordinates
of p ∈ SJ are in S1), with SO(d−2) acting diagonally by fixing the first coordinate.
We can therefore assume that the statement holds for the Morse-Bott functions F1

and F2 used in the definition of F̄ . The critical submanifolds Cd(`±) of F have
trivial normal bundle [21, Lemma 3.3], which gives an extra copy of Rd−1 on which
SO(d− 2) acts in the described way. �

Let ki(d− 1) be the index of the critical manifold Sd−2 of F̄ whose critical value is
in (xi−1, xi). Then denote

Ni = (Dd−1)ki × (Dd−1)n−3−ki/SO(d− 2),

where Dd−1 ⊂ Rd−1 is the usual closed unit ball. It follows that Mi is homeo-
morphic to Mi−1 ∪ Ni and with the excision properties for pseudomanifolds with
boundary we get

IpH∗(Mi,Mi−1) ∼= IpH∗(Ni, ∂−Ni),

where ∂−Ni = ∂((Dd−1)ki)× (Dd−1)n−3−ki/SO(d− 2) for any perversity.

Let us denote N−i = (Dd−1)ki/SO(d− 2) and ∂N−i = ∂((Dd−1)ki)/SO(d− 2). The
obvious inclusion N−i ⊂ Ni induces a homotopy equivalence of pairs (N−i , ∂N

−
i ) '

(Ni, ∂−Ni), but this does not induce an isomorphism on intersection homology in
general. In fact, N−i is not a pseudomanifold for ki ≤ d− 3.

However, if N−i is a pseudomanifold (with boundary), its dimension is dki+3
d , and

I0H∗(N−i , ∂N
−
i ) ∼= ItH

d
ki+3

d −∗(N
−
i )

by Lefschetz duality, and since the latter is just ordinary homology of a contractible
space, we have

I0H
d

ki
d

(N−i , ∂N
−
i ) ∼= Z

and all other groups are trivial. Since we are interested in Z coefficients, we have to
be slightly careful with Lefschetz duality and torsion. To see that no torsion occurs,
we use [7, Cor.4.4.3], note that since we use the top perversity, the condition of
being locally (p,Z)-torsion free is trivial. Also, [7, Cor.4.4.3] is stated for Poincaré
duality, but because of the way Lefschetz duality is derived from Poincaré duality
in [7], the result also holds for Lefschetz duality.

The inclusion N−i ⊂ Ni is stratum preserving, but the codimensions of the strata
are different. In particular, the inclusion is not placid in the sense of [16, §4.8]. In
order to get a homomorphism between intersection homology groups of (N−i , ∂N

−
i )

and (Ni, ∂−Ni) we have to vary the perversities for them. The following lemma
gives a criterion for obtaining such a homomorphism; its proof is analogous to the
proof of [16, Ex.4.8.2].
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Lemma 5.2. Let X, Y be pseudomanifolds, p, q perversities, and f : X → Y
a stratum preserving map for some stratifications of X and Y . Then f induces a
map on homology

f∗ : IpH∗(X)→ IqH∗(Y )

provided that

q(k)− k ≥ p(mk)−mk

where mk is the minimal codimension of a stratum S with f(S) in a stratum of
codimension k.

Therefore inclusion induces a map on intersection homology by increasing the per-
versity for (Ni, ∂−Ni), that is, we have a well defined homomorphism

i∗ : I0H∗(N−i , ∂N
−
i )→ Ipn−3−kiH∗(Ni, ∂−Ni).

In the next section we show that this is indeed an isomorphism.

6. Intersection homology of Morse data

We modify our notation, for non-negative integers m, k with m ≥ k let

Nm,k = ((Dd−1)k × (Dd−1)m−k)/SO(d− 2),

∂−Nm,k = (∂((Dd−1)k)× (Dd−1)m−k)/SO(d− 2).

The stratification is given by

∅ ⊂ Nm,k
2 ⊂ · · · ⊂ Nm,k

d−2 ⊂ N
m,k

where Nm,k
c is the image of ((Dc−1)k × (Dc−1)m−k)/SO(c − 2) in Nm,k for all

c = 2, . . . , d− 2.

If l is another non-negative integer with l ≤ m − k and m − l ≥ d − 2 we have an
inclusion of pairs of pseudomanifolds with boundary

(Nm−l,k, ∂−Nm−l,k) ⊂ (Nm,k, ∂−Nm,k)

which adds zeros into the extra coordinates. Let s ≥ 0 with s+ l ≤ m− d+ 2. The
inclusion then induces a map on intersection homology

i∗ : IpsH∗(Nm−l,k, ∂−Nm−l,k)→ Ips+lH∗(Nm,k, ∂−Nm,k)

by Lemma 5.2. This is an isomorphism.

Lemma 6.1. Let d,m, l, k, s be non-negative integers with l ≤ m−k, m− l ≥ d−2
and s ≤ m− l − d+ 2. Then

IpsH∗(Nm−l,k, ∂−Nm−l,k) ∼= Ips+lH∗(Nm,k, ∂−Nm,k)

and the isomorphism is induced by inclusion.

The conditions on the integers are to ensure that we do get pseudomanifolds and
perversities in the sense of [8].

Proof. There is an obvious retraction r : (Nm,k, ∂−Nm,k) → (Nm−l,k, ∂−Nm−l,k)
induced by projection, but this retraction does not preserve the stratification.

Therefore let us assume that l = 1. In that case r−1(Nm−1,k
c ) ⊂ Nm,k

c+1 , and we
define

Nm,k
c,c+1 = r−1(Nm−1,k

c )



INTERSECTION HOMOLOGY OF LINKAGE SPACES 15

for all c = 2, . . . , d− 2. We then have the stratification

∅ ⊂ Nm,k
2 ⊂ Nm,k

2,3 ⊂ N
m,k
3 ⊂ · · · ⊂ Nm,k

d−2 ⊂ N
m,k
d−2,d−1 ⊂ N

m,k

and it is easy to check that the retraction is stratum preserving using this stratifi-
cation. Notice that

dimNm,k
c,c+1 = dimNm,k

c + 1.

To get an appropriate perversity p′s+1, we need entries for each Nm,k
c,c+1 which can

be at most one less than the entry for Nm,k
c , for all c = 2, . . . , d − 2. We denote

these entries by p′s+1(c, c+ 1) and set them to be

p′s+1(c, c+ 1) = ps+1(c)− 1 = c(s+ 1)− 1.

The other entries are the same:

p′s+1(c) = ps+1(c)

Since intersection homology does not depend on the stratification by [9], we get

Ips+1H∗(Nm,k, ∂−Nm,k) ∼= Ip
′
s+1H∗(Nm,k, ∂−Nm,k).

We need to check the conditions of Lemma 5.2 to get an induced map

r∗ : Ip
′
s+1H∗(Nm,k, ∂−Nm,k)→ IpsH∗(Nm−1,k, ∂−Nm−1,k).

Note that the strata of minimal codimension mapping into Nm−1,k
c −Nm−1,k

c−1 are

Nm,k
c,c+1 −Nm,k

c . The codimension of Nm−1,k
c −Nm−1,k

c−1 is given by

cm+2
d,d−c = (d− c)(m+ 2− d) +

(d− c)(d− c− 1)

2

using (2). Therefore, the codimension of Nm,k
c,c+1−Nm,k

c is cm+3
d,d−c−1 = cm+2

d,d−c+c−1.

It follows that

ps(c)− cm+2
d,d−c = p′s+1(c, c+ 1)− (cm+2

d,d−c + c− 1)

which fits exactly the condition needed for Lemma 5.2 to apply. To see that r∗ is the
inverse isomorphism for i∗, notice that the obvious strong deformation retraction
between the identity and i ◦ r is also stratum preserving, and can therefore be used
to construct the isomorphism, compare [6, Prop.2.1].

This finishes the case l = 1. For l > 1 simply iterate this argument l times. �

We saw in the previous section how to calculate I0H∗(N k,k, ∂−N k,k) using ordinary
homology and cohomology. We will also need calculations for other perversities.

To simplify notation, write N k = N k,k and ∂N k = ∂−N k,k. In [21, §6] a rel-
ative CW-complex structure for (N k, ∂N k) was given and used to calculate ra-
tional homology groups. We want to use this structure to also do intersection
homology calculations. However, one has to be careful with using arbitrary CW-
decompositions for intersection homology calculations, compare [18, Appendix].
We therefore repeat the construction of the CW-structure and justify its use for
intersection homology calculations.

Recall that N k = (Dd−1)k/SO(d−2) where SO(d−2) acts on Dd−1 as the subgroup
of SO(d−1) which fixes the first coordinate. A typical element of N k is represented
by (x1, . . . , xk) with each xi ∈ Dd−1. Using an element of SO(d−2) we can assume
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that x1 ∈ D2 × {0} ⊂ Dd−1 with the second coordinate non-negative. Let us
introduce the notation

Dc
+ = {(y1, . . . , yc, 0, . . . , 0) ∈ Dd−1 | yc ≥ 0},

for c = 2, . . . , d − 2, so that x1 ∈ D2
+. We will also think of Dc ⊂ Dd−1 for all

c = 1, . . . , d− 2, occupying the first c coordinates.

Using an element of SO(d− 3), which is understood to fix the first two coordinates
of Dd−1, we can assume that x2 ∈ D3

+. Continuing this way we can represent the

element of N k by

(x1, . . . , xk) ∈ D2
+ ×D3

+ × · · · ×Dd−2
+ × (Dd−1)k−(d−3).

To get a relative CW-structure for (N k, ∂N k) we start with a k-cell (D1)k, which
gives the cell structure for N k

2 . To cover the elements of N k
3 , we need cells of the

form (D1)l ×D2
+ × (D2)k−1−l for l = 0, . . . , k − 1.

Continuing, the cells needed for N k
c , c = 2, . . . , d− 2, are of the form

(D1)l1 ×D2
+ × (D2)l2 × · · · ×Dc−1

+ × (Dc−1)k−(c−2)−l1−···−lc−2 ,

and to cover N k −N k
d−2 we require the cells

(D1)l1 ×D2
+ × (D2)l2 × · · · ×Dd−2

+ × (Dd−1)k−(d−3)−l1−···−ld−3 .

Writing Dl as a (d−2)-dimensional column vector

(
∗
0

)
with the entry ∗ used (l−1)

times, and Dl
+ as

∗+
0

 with the entry ∗ used (l− 2) times, we can write each cell

as a (d − 2) × k matrix with entries 0, ∗ and +, compare [21, §5]. Note that the
k-dimensional cell (D1)k is represented by the zero matrix.

The boundary operator of the corresponding chain complex C∗(N k, ∂N k) has been
described explicitly in [21, §6]. Roughly, on the level of matrices it is obtained by
summing over all matrices obtained by replacing + with 0, and coefficients either

0 or ±2, where
+ ∗
0 ∗ always turns into 0, and

+ ∗
0 0

turns into ε · 0 +
0 0

with

ε ∈ {0,±2}.
This is justified as Dl

+ ×Dl has as part of its boundary Dl−1 ×Dl which can be

thought of as Dl−1 × Dl
+ ∪ Dl−1 × Dl

−. Using an element of SO(d − 2) we can

map Dl−1×Dl
− to Dl−1×Dl

+, but this map affects the orientations of other discs,
so that on the level of the chain complex the boundary contribution of the cell
Dl−1 ×Dl

+ may be 0 or ±2.

Note that a cell (D1)l1 ×D2
+× · · ·× (Dd−1)k−L intersected with N k

c is another cell

(D1)l1 × D2
+ × · · · × (Dc−1)k−L

′
, so the CW-structure could be considered ‘flag-

like’. We use this to subdivide the cell structure to a flag-like triangulation without
changing the chain homotopy type of the corresponding intersection homology com-
plex.

We begin by subdividing Dd−1. For i = 1, . . . , d− 1 let εi ∈ {−, 0,+} and

Dd−1
ε1···εd−1

= {(y1, . . . , yd−1) ∈ Dd−1 | yi ∼ εi},
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where yi ∼ 0 means yi = 0, yi ∼ + means yi ≥ 0 and yi ∼ − means yi ≤ 0. If
2 ≤ c ≤ d− 2, we can also write Dc−1

ε1···εc−1
= Dd−1

ε1···εc−10···0.

We then get a subdivision of the previous cell structure using cells of the form

Dc1−1
ε1 1···ε1 c1−1

× · · · ×Dck−1
εk 1···εk ck−1

subject to the condition that c1 ≥ 2, with ε1 c1−1 = + if c1 > 2, ci − ci−1 ∈ {0, 1}
and if ci > ci−1, then εi ci−1 = +.

Let us denote by C ′∗(N k, ∂N k) the cellular chain complex of this subdivision. We
can form the subcomplexes IpC∗(N k, ∂N k) and IpC ′∗(N k, ∂N k) using the standard
definition of p-allowable chains. Then subdivision induces a chain map

i : IpC∗(N k, ∂N k)→ IpC ′∗(N k, ∂N k).

To obtain a chain map p : IpC ′∗(N k, ∂N k) → IpC∗(N k, ∂N k) note that each cell
in the subdivision complex satisfies Dc−1

ε1···εc−1
⊂ Dc−1, and if εc−1 = +, Dc−1

ε1···εc−1
⊂

Dc−1
+ .

We can find a cellular homotopy H : Dc−1 × I → Dc−1 between the identity and a
map H1 which is cellular when viewed as a map from the subdivision of Dc−1 to
the original cell. Furthermore, we obtain another homotopy H+ : Dc−1

+ ×I → Dc−1
+

which does the same for Dc−1
+ .

This can be done using induction on c, basically by sliding the cell Dc−1
+···+ over

Dc−1 (or Dc−1
+ ) while all other c − 1-dimensional cells map into lower skeleta.

These homotopies are stratum preserving, so can be used to define a chain map
p : IpC ′∗(N k, ∂N k)→ IpC∗(N k, ∂N k) with p◦ i = idIpC∗ and i◦p chain homotopic
to idIpC′∗ .

Note that the construction of the homotopies to give the chain homotopy equiva-
lences is similar to the proof in [18, Appendix].

The subdivision cell complex is regular in the sense that the attaching maps are
homeomorphisms onto their image, and it has the same flag-like property as the
original cell complex. If we subdivide this subdivision further by a flag-like triangu-
lation, we can use the flag-like property to see that IpC ′∗(N k, ∂N k) has the correct
chain homotopy type for intersection homology by a similar argument as above,
compare also [18, Appendix].

It remains to calculate the homology of IpC∗(N k, ∂N k).

Each cell σ is represented by a symbolic (d − 2) × k matrix, whose non-zero rows
(except the last one) are of the form (0 · · · 0 + ∗ · · · ∗), with the last one of the
form (0 · · · 0 ∗ · · · ∗). More precisely, if we denote the number of non-zero entries in
the i-th row, i = 1, . . . , d− 2, by ki, we have 0 ≤ k1 ≤ k, 0 ≤ ki ≤ max{0, ki−1− 1}
for i = 2, . . . , d− 3, and kd−2 = max{0, kd−3 − 1}.
The dimension of the cell σ is then given by

dimσ = k + k1 + · · ·+ kd−2.

Also note that σ is a cell in N k
c if and only if ki = 0 for i ≥ c − 1, for all c =

2, . . . , d− 2. Furthermore,

dim(σ ∩N k
c ) = k + k1 + · · · kc−2.
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If p is a perversity, the condition for the cell σ to be p-allowable is then simply
given by

ck+3
d,d−c − p(d− c) ≤ kc−1 + · · ·+ kd−2.

Recall that ck+3
d,d−ck is the codimension of N k

c and p(d−c) is the entry corresponding
to this stratum.

If we look at the perversity ps with s ∈ {0, . . . , k + 2 − d}, we can get a simpler
criterion for allowability.

Lemma 6.2. Let s ∈ {0, . . . , k+ 2− d}. For the cell σ to be ps-allowable, we need

k − i+ 1− s ≤ ki ≤ k − i+ 1

for all i = 1, . . . , d− 3.

Proof. Note that ki ≤ k− i+1 is satisfied anyway. So assume that k− i+1−s > ki
for some i ∈ {1, . . . , d− 3}. Then

k − j + 1− s > kj

for all j ≥ i. Write c = d− i+ 1. Then

kd−c−1 + kd−c + · · ·+ kd−2 < ck − (d− c− 1)− · · · − (d− 2) + c− cs
= ck − cd+ 2 + · · ·+ (c− 1) + c+ (c+ 1) + c− cs
= c(k + 3− d) + 1 + 2 + · · ·+ (c− 1)− cs
= ck+3

d,c − ps(c)

which would contradict ps-allowability. The same calculation also shows that the
inequality is sufficient for allowability. �

For s = 0 this means that only the top-dimensional cell is allowable. As its boundary
is zero, this confirms our previous calculation of I0H∗(N k, ∂N k).

The remaining case of interest for us is when s = 1. Recall that we assume k ≥
d − 2, so that N k is a pseudomanifold with boundary. In order to get that p1 is
a perversity, we actually need k ≥ d − 1. The dimension of N k is given by dk+3

d ,
compare (1).

Proposition 6.3. Let k ≥ d− 1.

If d is odd, then

Ip1Hdk+3
d −r(N

k, ∂N k) =

 Z r = 0
Z/2 r = 2l + 1, l = 1, . . . , (d− 3)/2

0 otherwise

If d is even, then

Ip1Hdk+3
d −r(N

k, ∂N k) =

 Z r = 0
Z/2 r = 2l, l = 1, . . . , (d− 4)/2

0 otherwise

Proof. We claim that Ip1C∗(N k, ∂N k) is generated by one cell each in dimensions

dk+3
d − r for r = 0, 2, 3, . . . , d− 2.
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To see this note that for a cell to be p1-allowable, Lemma 6.2 gives the existence
of i0 ∈ {1, . . . , d− 3, d− 1} such that

ki =

{
k − i+ 1 i < i0
k − i i ≥ i0

The case i0 = d−2 is omitted, as kd−2 = kd−3−1, and i0 = d−1 corresponds to the
top-dimensional cell. The matrices of the non-top-dimensional, p1-allowable cells

each have one occurance of a submatrix

(
+ ∗ ∗
0 0 +

)
, while all other occurences of

+ are in a submatrix of the form

(
+ ∗
0 +

)
. Therefore the boundary of such a cell

in C∗(N k, ∂N k) can involve at most one other cell, which is also p1-allowable. The

dimension of such a cell, depending on i0, is easily seen to be dk+3
d − (d − 1 − i0)

which proves the claim.

Let us denote such a cell by σi0 with i0 ∈ {1, . . . , d− 3, d− 1}. Clearly ∂(σd−1) = 0
which shows that the top-dimensional homology is Z. But for i0 ≤ d − 3, we get
∂(σi0) = εi0σi0−1 with εi0 ∈ {0,±2}. This boundary has been analyzed in detail
in [21, §8], and it is shown there that ε depends on the difference of the number
of non-zero entries in the i0-th row with the number of non-zero-entries in the last
row. More precisely, if the difference of these numbers, taken from the matrix of
σi0−1, is l, the coefficient is 1 + (−1)l.

In particular, we have ∂(σd−3) = 2σd−4, interpreting σ0 = 0, in case d = 4. As
the coefficients are alternating between 0 and 2 from then on, the chain complex
Ip1C∗(N k, ∂N k) is of the form

Z −→ 0 −→ Z ·2−→ Z ·0−→ Z −→ · · · ·ε1−→ Z

As ε1 = 2 for odd d and ε1 = 0 for even d, the result follows. �

7. Generators for the reduced intersection ring

The reduced intersection ring IH(d−1)∗(Md(`)) is generated by Ip1Hdn−1
d

(Md(`)),

so we begin by calculating this group.

In Section 5 we obtained a SO(d− 1)-invariant Morse-Bott function F̄ : Cd(`)→ R
with all critical manifolds spheres of dimension d−2 and of index k(d−1) for some
k ∈ {0, . . . , n − 3}. Furthermore, the number of such spheres with index k(d − 1)
is equal to the (2k)-th Betti number of M3(`). The Betti numbers of M3(`) are
well known, see [11, 17]. In particular, forM3(`) 6= ∅ we have exactly one absolute
maximum, and the number of critical manifolds of index (n− 4)(d− 1) is equal to
1 + a1(`) by [21, Prop.4.4]. Recall the ak(`) are defined in Section 2.

The Morse function F̄ induces the filtration

∅ ⊂ M0 ⊂M1 ⊂ · · · ⊂ Mm =Md(`)

as in Section 5.

Recall that we need n ≥ d+2 for p1 to be a perversity. If n = d+1,Md(`) is either

empty or a sphere of dimension dd+1
d , so we do not need to consider this case.



20 DIRK SCHÜTZ

Lemma 7.1. Let d ≥ 4, n ≥ d + 2 and ` ∈ Rn a generic length vector such that
Md(`) 6= ∅. Then

Ip1Hdn−1
d

(Mm−1) ∼= Z1+a1(`),

Ip1Hdn−1
d −1(Mm−1) ∼= 0.

Proof. For l ≤ m− 1 we have the long exact sequence

· · · −→ Ip1Hr+1(Ml,Ml−1) −→ Ip1Hr(Ml−1) −→ Ip1Hr(Ml) −→

Ip1Hr(Ml,Ml−1) −→ · · ·

and Ip1Hr+1(Ml,Ml−1) ∼= Ip1Hr(Nn−3,kl , ∂−Nn−3,kl) using the notation of Sec-
tion 6. Here kl refers to the index of the critical point contained in Ml −Ml−1.
Then kl ≤ n− 4 as there is only one critical point of index (n− 3)(d− 1), and it is
contained in Mm −Mm−1.

We need to show that

Ip1Hr(Nn−3,kl , ∂−Nn−3,kl) = 0

for r = dn−1
d − 1,dn−1

d ,dn−1
d + 1 if kl < n− 4, and

Ip1Hr(Nn−3,n−4, ∂−Nn−3,n−4) =

{
Z r = dn−1

0 r = dn−1 ± 1

The latter follows directly from Lemma 6.1. For the former, we use Lemma 6.1 and
Lefschetz duality for pseudomanifolds with boundary to get

Ip1Hr(Nn−3,kl , ∂−Nn−3,kl) ∼= I0Hr(Nn−4,kl , ∂−Nn−4,kl)

∼= ItHdn−1
d −r(N

n−4,kl , ∂+Nn−4,kl)

This is the ordinary homology group Hdn−1
d −r(Nn−4,n−4−kl , ∂−Nn−4,n−4−kl). The

homology of this pair has been calculated in [21, §7]. In particular, as kl < n− 4,
∂−Nn−4,n−4−kl 6= ∅, so the homology vanishes in degrees 0,±1. Again we do not
get any torsion from Lefschetz duality, as [7, Cor.4.4.3] applies.

Therefore no homology occurs in degree dn−1
d − 1, and the rank of Ip1Hdn−1

d
(Ml)

increases by one exactly when there is a critical point of index (n − 4)(d − 1) in
Ml−Ml−1. As there are exactly 1+a1(`) such critical points, the result follows. �

Corollary 7.2. Let d ≥ 5 be odd, n ≥ d + 2 and ` ∈ Rn a generic length vector
with Md(`) 6= ∅. Then

Ip1Hdn−1
d

(Md(`)) ∼= Z1+a1(`).

Proof. We have the long exact sequence

· · · −→ Ip1Hdn−1
d +1(Md(`),Mm−1) −→ Ip1Hdn−1

d
(Mm−1) −→

Ip1Hdn−1
d

(Md(`)) −→ Ip1Hdn−1
d

(Md(`),Mm−1) −→ · · ·

Combining Proposition 6.3 with Lemma 7.1, this sequence reduces to

Z/2 −→ Z1+a1(`) −→ Ip1Hdn−1
d

(Md(`)) −→ 0

As Z/2 necessarily has to map to 0, the result follows. �
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It can easily be shown that Ip1Hdn−1
d +1(Mm−1) = 0, so we also get

Ip1Hdn−1
d +1(Md(`)) ∼= Z/2

for odd d. However, we have no real use for this result.

For even d the long exact sequence turns into

Z −→ Z1+a1(`) −→ Ip1Hdn−1
d

(Md(`)) −→ 0

and we will see that the first map is non-trivial. This will actually simplify our
calculation of the reduced intersection ring, at least after using rational coefficients.
For d odd we can only handle certain special cases. A particular case is given in
the following example.

Example 7.3. Let `n = (1, . . . , 1, n − 2) ∈ Rn. This is the unique generic and
ordered length vector with a1(`) = 0. The space Md(`

n) is also known as the
shape space Σn−1

d−1 of [15], see [21, Prop.A.1].

Let d be odd and n = d+ k with k ≥ 1. For s ≤ k − 1 we claim that

IpsHdn−s
d

(Md(`
n)) ∼= Z.

Furthermore, the reduced intersection ring agrees with the unreduced intersection
ring, and we have

IH(d−1)∗(Md(`
d+k)) ∼= Z[X]/Xk

with the degree of X equal to d− 1.

The proof is by induction on k. We will also show that IpsHdn−s
d

(Md(`
n)) is

generated by the fundamental class

[Md(`
n−s)] ∈ IpsHdn−s

d
(Md(`

n))

and that

IpsHdn−s
d −1(Md(`

n)) = 0.

For s = 0 and all k the fundamental class part is a standard result for pseudoman-
ifolds, and the latter part follows from Section 6.

For k ≥ 2, note that (`d+k)− = `d+k−1 and (`d+k)+ satisfies Md((`
d+k)+) = ∅.

The SO(d−1)-equivariant Morse function F : Cd(`d+k)→ R from Section 5 has two
critical manifolds, the absolute minimum Cd(`d+k−1) and one absolute maximum
Sd−2. We thus get a filtration of Md(`

d+k) of the form

∅ ⊂ Md+k ⊂Md(`
d+k)

where Md+k has the homotopy type of Md(`
d+k−1). In fact, using the same

technique as in the proof of Lemma 6.1, we see that

IpsH∗(Md(`
d+k−1)) ∼= Ips+1H∗(Md+k).

In particular,

[Md(`
d+k−s−1)] ∈ Ips+1Hdd+k−s−1

d
(Md+k)

is a generator and

Ips+1Hdd+k−s−1
d −1(Md+k) = 0.
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We have the long exact sequence

· · · −→ Ips+1Hr+1(Md(`
d+k),Md+k) −→ Ips+1Hr(Md+k) −→

Ips+1Hr(Md(`
d+k)) −→ Ips+1Hr(Md(`

d+k),Md+k)

Note that

Ips+1Hr(Md(`
d+k),Md+k) ∼= Ips+1Hr(N d+k−3, ∂N d+k−3)

in the notation of Section 6. By Lemma 6.2, the minimal dimensional cell which is
ps+1-allowable is obtained by choosing each ki = d+k−3−i−s for i = 1, . . . , d−2.
The dimension of this cell is

d+ k − 3 + (d+ k − 3− 1− s) + · · ·+ (d+ k − 3− (d− 2)− s) =

(d+ k − 3− s− 1)(d− 1) + (s+ 1) + 1 + · · ·+ (d− 3) =

dd+k−s−1
d + (s+ 1)

In particular, for s > 0 and r ≤ dd+k−s−1
d inclusion induces an isomorphism

Ips+1Hr(Md+k) ∼= Ips+1Hr(Md(`
d+k))

and this even holds for s = 0 as in Corollary 7.2. This finishes our induction
step. It remains to calculate the intersection ring. Of course, X corresponds to the
fundamental class

[Md(`
d+k−1)] ∈ Ip1Hdd+k−1

d
(Md(`

d+k)).

Note that we think of Md(`
d+k−1) ⊂ Md(`

d+k) as those points [x1, . . . , xn] with
xn−1 = −xn. But we could also fix a different coordinate to point in the opposite
direction of the last entry: let

Md(`
d+k−1)′ = {[x1, . . . , xn] ∈Md(`

d+k) |xn−2 = −xn}.

Clearly this is homeomorphic to Md(`
d+k−1) by permuting coordinates. From

Lemma 7.4 below it follows that

[Md(`
d+k−1)] = [Md(`

d+k−1)′].

Therefore, as Md(`
d+k−1) and Md(`

d+k−1)′ are transverse in the sense of [8],

X2 = [Md(`
d+k−1)] · [Md(`

d+k−1)]

= [Md(`
d+k−1)] · [Md(`

d+k−1)′]

= [Md(`
d+k−1) ∩Md(`

d+k−1)′]

= [Md(`
d+k−2)]

This means that X2 is a generator of Ip2Hdd+k−2
d

(Md(`
d+k)), and we can iterate

this argument until Xk = 0.

Lemma 7.4. Let d ≥ 3, n ≥ d+ 2 and `n = (1, . . . , 1, n− 2) ∈ Rn. Denote

M = {[x1, . . . , xn] ∈Md(`
n) |xn−1 = −xn}

M′ = {[x1, . . . , xn] ∈Md(`
n) |xn−2 = −xn}.

Then [M] = [M′] ∈ Ip1Hdn−1
d

(Md(`
n)).
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Proof. The idea is the following: if [x1, . . . , xn] ∈ M, then xn−2 is linearly inde-
pendent of xn−1, unless [x1, . . . , xn] ∈M∩M′. Note that each xi for i < n has to
be close to −xn by the particular form of the length vector. We can therefore flip
the position of xn−2 and xn−1 through a 1-dimensional parameter. This will define
a homotopy f :M× [0, 1]→Md(`

n) relative to M∩M′ between the inclusion of
M and the inclusion of M′.
More precisely, let x = [x1, . . . , xn] ∈ M. Assume that xn = e1, xn−1 = −e1 and
xn−2 ∈ S1

− = {(y1, y2, 0, . . . , 0) ∈ Sd−1 | y1, y2 ≤ 0}. Let lx = ‖x1 + · · ·+ xn−3‖ > 0
and `x = (lx, 1, 1, n − 2). It is easy to see that C2(`x) is a point for x ∈ M ∩M′
and a circle otherwise.

We think of C2(`x) as a subspace of Cd(`n), where the first link corresponds to a
rotation of x1 + · · ·+ xn−3 in the plane, and the second and third link correspond
to xn−2 and xn−1. Indeed, denote zx = (x1 + · · · + xn−3)/lx ∈ S1. Then define
ix : C2(`x)→ Cd(`n) by

ix(a, b, c) = ((az−1
x )x1, . . . , (az

−1
x )xn−3, b, c)

where we think of S1 acting on Sd−1 by rotation of the first two coordinates, that
is, as SO(2). It is easy to see that this is indeed an inclusion.

There is a unique point (a, b, c) ∈ C2(`x) such that c = −e1, b ∈ S1
−. Write

b = exp((π + ux)i) with ux ≥ 0. As C2(`x) is either a circle or a point, there
is a unique map hx : [0, 1] → C2(`x) with p3(hx(t)) = exp((π + uxt)i), where
p3 : C2(`x)→ S1 is projection to the third coordinate.

It is now straightforward to check that f : M× [0, 1]→Md(`
n) given by

f(x, t) = [ix(hx(t))]

is a well defined map which satisfies f(x, 0) inclusion, and f(x, 1) = q(x), where
q : M → Md(`

n) is inclusion followed by flipping the (n − 2)-nd and (n − 1)-
st coordinates. As f is stratum preserving, f0 and f1 induce the same map on
intersection homology

f0∗ = f1∗ : I0H∗(M)→ Ip1H∗(Md(`
n))

which implies that [M] = [M′] in the latter group. �

For even d Example 7.3 is a bit different. This is related to the following lemma.

Lemma 7.5. Let d ≥ 4 be even and ` ∈ Rn an ordered, generic length vector with
n ≥ d+ 2. Then

2[Md(`
−)] = 2[Md(`

+)] ∈ Ip1Hdn−1
d

(Md(`)).

Proof. Let

C̃d(`) = {(x1, . . . , xn−1) ∈ Cd(`) |xn−2, xn−1 ∈ S1}

where S1 ⊂ Sd−2 is the standard inclusion using the first two coordinates. For
generic ` this is a submanifold of Cd(`), and the projection p : C̃d(`) → S1 to the
last coordinate has −1 ∈ S1 as a regular value. In particular, for θ ∈ S1 close to
−1, we get that

C̃θd(`) = p−1({θ})
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is diffeomorphic to p−1({−1}). Furthermore, this diffeomorphism can be chosen to
be SO(d− 2)-equivariant, where SO(d− 2) fixes the first two coordinates.

Fix θ0 ∈ S1 close enough to −1 so that this diffeomorphism exists. This gives rise
to a SO(d− 2)-equivariant map

H̃ : C̃θ0d (`)× [0, 1]→ Cd(`)

which at time t is inclusion to p−1({θt}), where θt ∈ S1 starts at θ0 and ends at
−1.

Define

Mθ0
d (`) = C̃θ0d (`)/SO(d− 2),

which is easily seen to be a pseudo-manifold of dimension dn−1
d that represents an

element [Mθ0
d (`)] ∈ Ip1Hdn−1

d
(Md(`)). Furthermore, we get the stratum preserving

homotopy

H : Mθ0
d (`)× [0, 1]→Md(`)

starting with the inclusion and ending with a surjection H1 : Mθ0
d (`) → Md(`

−).
For a generic set of points inMd(`

−) the map H1 is a 2 : 1-map: if xn−2 6= ±xn−1

for x = [x1, . . . , xn−1] ∈ Md(`
−) there are two points in Mθ0

d (`) send to x coming

from the Z/2-action on Mθ0
d (`) which flips the second coordinate.

For even d the Z/2-action is orientation preserving, as we can rotate the second

and the last coordinate by an angle of π, and for a generic point x ∈Mθ0
d (`) there

are d− 2 elements which do not have a non-zero entry in the last coordinate. This
means that H1 is a degree 2 map from Mθ0

d (`) to Md(`
−), which implies that

[Mθ0
d (`)] = 2[Md(`

−)].

For η near +1 ∈ S1 we can do a similar construction, showing that

[Mη0
d (`)] = 2[Md(`

+)].

Let J ⊂ S1 be the interval in the upper half plane with endpoints θ0 and η0. Then
p−1(J) ⊂ C̃d(`) is a cobordism between C̃θ0d (`) and C̃η0d (`). Passing to the quotient

under the SO(d− 2) action shows that [Mθ0
d (`)] = [Mη0

d (`)]. �

Example 7.6. For `n from Example 7.3 with even d we have Md((`
n)+) = ∅, so

over the rationals Ip1Hdn−1
d

(Md(`
n);Q) = 0, and the rational intersection ring is

trivial.

For d = 4 we can actually show that

Ip1Hdn−1
4

(M4(`n)) = Z/2Z.

In [15, §5.2] it is shown that Hdn−1
4

(Σn−1
3 ) ∼= Z/2Z and Σn−2

3 ≈ M4(`n−1) repre-

sents the generator. The natural map

Ip1Hdn−1
4

(M4(`n)) −→ Hdn−1
4

(Σn−1
3 )

is therefore surjective, and since the former is generated by [M4(`n−1)] which has
order 2, it has to be an isomorphism.

We can now repeat the argument of Example 7.3 to show that

IpsHdn−s
4

(M4(`n)) ∼= Z/2Z
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generated by [M4(`n−s)] for s = 1, . . . , n− 5, and the unreduced intersection ring
satisfies

IH3∗(M4(`)) ∼= Z[X]/〈Xn−4, 2X〉.
We expect the analogous statement to hold also for d ≥ 6 even, but the homology
calculations for Σn−1

d−1 are somewhat more involved, compare [15, §5].

Recall the length vector `J for J ⊂ {1, . . . , n− 1} defined in Section 4. To simplify
notation, we will write

Yi = [Md(`{i})] ∈ IHd−1(Md(`))

for i = 1, . . . , n− 1. Note that if {i, n} is `-long, then Yi = 0. If J ∪ {n} is `-short,
we also write

YJ = Yi1 · · ·Yik ∈ IH(d−1)k(Md(`))

for J = {i1, . . . , ik} with i1 < · · · < ik. By the properties of the intersection product
we have YJ = ±[Md(`J)].

Proposition 7.7. Let ` ∈ Rn be a generic and ordered length vector with n ≥
d + 2, d ≥ 4 and k = a1(`). Then Y1, . . . , Yk are linearly independent elements of
IHd−1(Md(`)).

Proof. This follows directly from Lemma 8.1 below, the proof of this Lemma does
not require any further material from this section. �

Theorem 7.8. Let d ≥ 4 be even, n ≥ d + 2 and ` ∈ Rn a generic, ordered,
d-normal length vector. Then IHd−1(Md(`);Q) is generated by Y1, . . . , Ya1(`).

Proof. The proof is by induction on n, and it starts with n = d + 2. Since ` is d-
normal, we have a2(`) = 0. We distinguish the cases a1(`) < n−1 and a1(`) = n−1.
If a1(`) < n − 1, then Md(`

+) = ∅. By Lemma 7.1, Ip1Hdn−1
d

(Mm−1) has rank

1 + a1(`). Furthermore, [Md(`
−)] is one of the generators. By Lemma 7.5 it

represents 0 in Ip1Hdn−1
d

(Md(`);Q), and as the natural map

Ip1Hdn−1
d

(Mm−1;Q)→ Ip1Hdn−1
d

(Md(`);Q)

is surjective, the result follows from Proposition 7.7.

If a1(`) = n − 1, we use the original Morse-Bott function F , so that we have
the minimum given by Md(`

−) and the maximum given by Md(`
+). As `+ is

d-normal, it has to be (1, . . . , 1, d − 1) ∈ Rd+1. Let M ⊂ Md(`) be the inverse
image of a regular value slightly smaller than the maximum, so that M has the
homotopy type ofMd(`)−Md(`

+). The standard Morse-Bott function onMd(`
+)

has two critical manifolds, Md(`
+−) and one absolute maximum x ∈ Md(`

+). In
Md(`) −M the minimum Md(`

+−) has index d − 1, so it represents the genera-
tor of Ip1Hdn−1

d
(Md(`) − {x},M). However, with a construction as in the proof

of Lemma 7.5 this element vanishes in Ip1Hdn−1
d

(Md(`),M;Q). It follows that

Ip1Hdn−1
d

(Md(`);Q) ∼= Ip1Hdn−1
d

(M;Q).

Recall that the Morse-Bott function F has a critical manifold SJ for every J ⊂
{1, . . . , n− 2} such that J ∪{n} is short, while J ∪{n− 1, n} is long. In particular,
we get this for {i} for all i = 1, . . . , n− 2. Therefore

Ip1Hdn−1
d

(M;Q) ∼= Qn−1
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with one generator being [Md(`
−)] and the others coming from the critical points.

As Y1, . . . , Yn−1 are linearly independent by Proposition 7.7, they have to be a
basis.

For the induction step, let n > d+ 2. We again use the Morse-Bott function F and
the subspaceM, which is a pseudomanifold with boundary. Let N =Md(`)−Mo,
also a pseudomanifold with boundary ∂N = ∂M. If a1(`) < n − 1, then N =
Nn−3. Also, the rank of Ip1Hdn−1

d
(M;Q) is 1 + a1(`) by Lemma 7.1, and one of

the generators is given by [Md(`
−)]. This generator dies in Ip1Hdn−1

d
(Md(`);Q)

by Lemma 7.5. Hence the rank of this group is a1(`), and the result follows by
Proposition 7.7.

If a1(`) = n − 1, the inclusion Md(`
+) ⊂ N is a homotopy equivalence which

induces an isomorphism on intersection homology if we add p1 to the perversity.

Recall the top perversity tn = (0, cnd,2 − 2, . . . , cnd,d−2 − 2). It is easy to check that
tn − p1 = tn−1. Using Lefschetz duality for pseudomanifolds with boundary, we
get

Ip1H∗(Md(`),M;Q) ∼= Ip1H∗(N , ∂N ;Q)
∼= Itn−p1Hdn

d−∗(N ;Q)

∼= Itn−1Hdn
d−∗(N ;Q)

∼= Itn−1−p1Hdn
d−∗(Md(`

+);Q)

∼= Ip1H∗−(d−1)(Md(`
+);Q).

The long exact sequence of (Md(`),M) thus turns into

· · · −→ Ip1Hdn−2
d +1(Md(`

+);Q) −→ Ip1Hdn−1
d

(M;Q) −→

Ip1Hdn−1
d

(Md(`);Q) −→ Ip1Hdn−2
d

(Md(`
+);Q) −→ Ip1Hdn−1

d −1(M;Q)

and the last term is 0 by Lemma 7.1.

By induction, the rank of Ip1Hdn−2
d

(Md(`
+);Q) is a1(`+). Note that {i, n−1} is `+-

short if and only if {i, n−1, n} is `-short. The rank of Ip1Hdn−1
d

(M;Q) is 1+cn−4,

where cn−4 is the number of critical points of index (n − 4)(d − 1) of F . These
critical points correspond to sets {i} with {i, n} `-short, but {i, n − 1, n} `-long.
Hence 1 + cn−4 + a1(`+) = a1(`) = n− 1. Therefore the rank of Ip1Hdn−1

d
(Md(`))

can be at most n− 1. By Proposition 7.7, it has to be n− 1. �

8. Calculation of the intersection ring

Whenever J ⊂ {1, . . . , n − 1} satisfies J ∪ {n} is `-short, we have an element
YJ ∈ IH |J|(d−1)(Md(`)). We want these to be linearly independent. In order to do
this, we construct explicitly the Poincaré dual of Md(`J).

Lemma 8.1. Let n ≥ d+ 1 ≥ 5 and ` ∈ Rn be a generic, ordered, d-normal length
vector, and J ⊂ {1, . . . , n − 1} with J ∪ {n} being `-short. Then there exists an
element ZJ ∈ I0H|J|(d−1)(Md(`)) with

ZJ · YK =

{
1 J = K
0 else
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Proof. We want to construct an embedding (Sd−1)|J| → Md(`) − Nd−2(`) which
has empty intersection with Md(`K) for every K ⊂ {1, . . . , n− 1} with |K| = |J |,
K ∪ {n} `-short and K 6= J , and which intersects Md(`J) transversely in exactly
one point. By the standard properties of the intersection pairing this will prove the
Lemma.

After reordering, we can assume that J = {k + 1, . . . , n − 1}. By d-normality, we
have k ≥ d ≥ 4. By genericity we can assume that `1 < `2 < · · · < `k < `n. We
have

`1 + · · ·+ `k−1 − `k > `k+1 + · · ·+ `n−1 − `n
as

`1 + · · ·+ `k−1 + `n > `k+1 + · · ·+ `n−1 + `k

which is true because J ∪ {n} is `-short and `n > `k.

Let B ⊂ Rd be the closed ball of radius `k+1 + · · ·+ `n−1 centered at −`n · e1. We
want to find a map f : B → (Sd−1)k with A ◦ f = idB , where A : (Sd−1)k → Rd is
given by

A(x1, . . . , xk) =

k∑
i=1

`ixi.

The map F : (Sd−1)|J| → Cd(`) given by

F (xk+1, . . . , xn−1) =

(
f

(
−`n · e1 −

n−1∑
i=k+1

`ixi

)
, xk+1, . . . , xn−1

)
(3)

is then nearly the map that we need.

In order to construct f , let us first consider the case d = 2. We begin by constructing
a ‘Snake charmer’, a map γ : [0, 1]→ (Sd−1)k such that

A ◦ γ(t) = (tC1 + (1− t)C2) · e1(4)

where

−(`1 + · · ·+ `k) < C1 < −(`k+1 + · · ·+ `n

and

`k+1 + · · ·+ `n−1 − `n < C2 < `1 + · · ·+ `k−1 − `k.
To do this, we can start in the position (e1, . . . , e1,−e1) ∈ (Sd−1)k and then start
to rotate the (k − 1)-th coordinate counterclockwise into the upper half plane.
At the same time, the k-th coordinate rotates counterclockwise so that the robot
arm `k−1xk−1 + `kxk remains on the first axis. We continue this until the (k −
1)-th coordinate is nearly rotated to −e1. After that we rotate the (k − 2)-th
coordinate counterclockwise into the upper half plane and rotate the k-th and
(k− 1)-th coordinate so that the robot arm consisting of the last three coordinates
ramins on the first axis. Here the k-th and (k − 1)-th coordinates are rotated
by the same amount, so that these two links remain stiff. When the (k − 2)-
th coordinate nearly reached the −e1 position, we start to rotate the (k − 3)-th
coordinate counterclockwise, using the last three coordinates to keep the robot
arm on the first axis. We continue this until all coordinates are near −e1. After
reparametrisation, we have the desired snake charmer.



28 DIRK SCHÜTZ

We actually do not want any of the links to point to e1. So rather than starting
with (e1, . . . , e1,−e1) we start at a position (x∗, . . . , x∗, y∗) ∈ (Sd−1)k with x∗ in
the upper half plane so close to e1 that the resulting snake charmer still satisfies (4).
Figure 2 indicates this map. The outer circle has radius `1 + · · ·+ `k, so represents

0l
n

 −

Figure 2. Snake charming along the x-axis.

all the points the robot arm in the first k coordinates could reach, and the inner
circle bounds B.

This construction also provides numbers 0 = t0 < t1 < · · · < tk−1 = 1 such that
on the interval [ti, ti+1] the first k− (i+ 2) coordinates are fixed, the k− (i+ 1)-th
coordinate rotates from a position near e1 to a position near −e1, and all other
coordinates have negative scalar product with e1. We refer to A ◦ γ as the robot
arm R.

We now want to extend γ to a map Γ: [0, 1] × [−1, 1] → (Sd−1)k so that A ◦ Γ

restricts to a homeomorphism of a closed subset B̃ ⊂ [0, 1] × [−1, 1] to B ⊂ R2.
Consider the interval [tk−2, 1] ⊂ [0, 1]. On this interval we want to rotate the robot
arm R into the plane. To do this rotation, consider [−1, 1] ⊂ S1 as those points
with first coordinate non-positive (and 0 corresponding to −e1 ∈ S1). We need a
map h : [−1, 1] → SO(2) with h(x) · (−e1) = x, which is no problem as SO(2) can
be identified with S1 via the action. We could then define Γ on [tk−2, 1]× [−1, 1] by
Γ(t, x) = h(x) · γ(t). Doing this will make it difficult to extend Γ to [0, 1]× [−1, 1],
and also the first coordinate can be rotated to e1.

Note that there is a unique point t∗ ∈ (tk−2, 1) with the first coordinate of γ(t∗)
equal to e2. From this point on we do not rotate the first coordinate by the same
amount as the other coordinates, and by the time t = tk−2, only the coordinates
2, . . . , k will rotate via h, the first coordinate will be fixed in the position x∗. This
way we can assure that the first coordinate is always different from e1. The other
coordinates are also different from e1, as they start with negative scalar product
with e1 and rotate by at most an angle of π/4. Figure 3 indicates the movement
of the robot arm near t = 1 and near t = tn−2. The solid circle bounds B, the
dotted circle indicates the movements of the first coordinate of the robot arm R.
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Figure 3. Rotating along the origin and along x∗.

By elementary geometry, the map A ◦ Γ maps a closed subset of [tk−2, 1]× [−1, 1]
homeomorphically onto B ∩A ◦ Γ([tk−2, 1]× [−1, 1]).

We now extend Γ to [tk−3, tk−2]× [−1, 1] in basically the same way. We first rotate
all of the coordinates 2, . . . , k, eventually rotating the second coordinate less, until
it is no longer rotated at time t = tk−3.

After finitely many steps we have a map Γ: [0, 1]× [−1, 1]→ (Sd−1)k and a closed

subset B̃ ⊂ [0, 1]× [−1, 1] such that A ◦ Γ maps B̃ homeomorphically onto B.

Note that we were assuming d = 2, and we need the analogous result for d ≥ 4.
In order to do this, replace [−1, 1] by Dd−1 = {(x1, . . . , xd) ∈ Sd−1 |x1 ≤ 0}. The
map p : SO(d) → Sd−1 given by p(A) = A · (−e1) is a fiber bundle, so there exists
a section h : Dd−1 → SO(d) which then can be used to define Γ.

The resulting map F : (Sd−1)|J| → Cd(`) given by (3) then intersects Cd(`J) trans-
versely in exactly one point, and has empty intersection with Cd(`K) for all K ⊂
{1, . . . , n − 1} with |K| = |J | and K 6= J . The point of intersection is given by
F (e1, . . . , e1).

Consider the induced map F̄ : (Sd−1)|J| →Md(`). With the current construction
we have that γ has image in (S1)k. This means that the image of F̄ will intersect
lower strata of Md(`). However, if we modify the robot arm γ slightly by using
the higher dimensions, the map A ◦ Γ will remain injective and we can repeat
the construction so that the image of F̄ is in Md(`) − Nd−2(`). This is using
that k ≥ d. The transverse intersection of F with Cd(`J) induces a transverse
intersection of F̄ with Md(`J) in exactly one point, so that F̄ induces an element
ZJ ∈ I0H|J|(d−1)(Md(`)) which has the desired properties. �

The fact that the ZJ can be defined with 0-perversity means that the YJ remain
linearly independent in ordinary homology. The reduced intersection ring for even
d can now be determined.

Proof of Theorem 4.5. We can assume that ` is ordered. By Theorem 7.8 the re-
duced intersection ring is generated by Y1, . . . , Yk with k = a1(`) = |S1(`)|. As d is
even, we get that

Yi · Yj = −Yj · Yi
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for all i, j ≤ k by [8, §2.4]. Therefore

IH(d−1)∗(Md(`);Q) ∼= ΛQ[Y1, . . . , Yk]/I

for some ideal I. If K ⊂ {1, . . . , n − 1} is such that K ∪ {n} is `-long, then
Md(`K) = ∅, so YK = 0, which means that YK ∈ I. It remains to show that there
are no other relations in I. But by Lemma 8.1 all YJ with J ∈ S·(`) are linearly
independent, which means that I is indeed generated by YK with K∪{n} long. �

Remark 8.2. The statement of Theorem 1.1 is true in the case d = 3, but the
condition of 3-normality can be replaced by n > 4. So in fact there are only two
chambers which have homeomorphic linkage spaces but are not the same chamber
up to permutation. For d = 4 one may therefore ask whether 4-normality can be
replaced by n > 5, or if one can give an example of length vectors from different
chambers with n > 5 with homeomorphic linkage spaces.
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