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Abstract

In 1985 Kevin Walker in his study of topology of polygon spaces [15]
raised an interesting conjecture in the spirit of the well-known question
“Can you hear the shape of a drum?” of Marc Kac. Roughly, Walker’s
conjecture asks if one can recover relative lengths of the bars of a linkage
from intrinsic algebraic properties of the cohomology algebra of its con-
figuration space. In this paper we prove that the conjecture is true for
polygon spaces in R3. We also prove that for planar polygon spaces the
conjecture holds is several modified forms: (a) if one takes into account
the action of a natural involution on cohomology, (b) if the cohomology
algebra of the involution’s orbit space is known, or (c) if the length vector
is normal. Some of our results allow the length vector to be non-generic,
the corresponding polygon spaces have singularities. Our main tool is
the study of the natural involution and its action on cohomology. A cru-
cial role in our proof plays the solution of the isomorphism problem for
monoidal rings due to J. Gubeladze.

1 Introduction

Let ` = (l1, . . . , ln) be a sequence positive real numbers. The planar poly-
gon space M` parameterizes shapes of all planar n-gons having sides of length
l1, . . . , ln. Formally, M` is defined as

M` = {(u1, . . . , un) ∈ S1 × . . .× S1;
n∑

i=1

liui = 0}/SO(2) (1)
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where the group SO(2) acts diagonally on the product S1×. . .×S1. If the length
vector ` is generic (see below) then M` is a closed smooth manifold of dimension
n− 3. If ` is not generic then M` is a smooth compact (n− 3)-manifold having
finitely many singular points.

The polygon space M` emerges in topological robotics as the configuration
space of the planar linkage, a simple mechanism consisting of n bars of length
l1, . . . , ln connected by revolving joints forming a closed planar polygonal chain.
The significance of spaces M` was also recognized in molecular biology where
these spaces describe shapes of closed molecular chains. Statistical shape theory,
see e.g. [11, 7], is another area where the spaces M` play an interesting role: they
describe the space of shapes having certain geometric properties with respect
to the central point.

Inspired by the work of W. Thurston and J. Weeks on linkages1 [14], the
configuration space of generic polygon spaces were studied by K. Walker [15],
A. A. Klyachko [12], M. Kapovich and J. Millson [8], J.-Cl. Hausmann and A.
Knutson [6] and others. Non-generic polygon spaces were studied by A. Wenger
[16] and the Japanese school (see, e.g. [10]). The Betti numbers of M` as func-
tions of the length vector ` are described in [2]; in particular, it was shown in [2]
that the integral homology H∗(M`) has no Z-torsion. A. A. Klyachko [12] found
the Betti numbers of spatial polygon spaces and their integral cohomology ring
is given in [6].

The spatial polygon spaces N` (defined by equation (8) below) emerge also as
spaces of semistable configurations of n points in CP1 having weights l1, . . . , ln,
modulo Möbius transformations, see [12], [9]. Planar polygon spaces M` admit
a similar description with the real projective line RP1 replacing the complex
projective line.

Walker’s conjecture [15] states that for a generic ` the cohomology ring of M`

determines the length vector ` up to a natural equivalence (described below). In
this paper we prove several results confirming this conjecture. Firstly, we show
that this statement is indeed true if one takes into account a natural involution
acting on the cohomology. Our main result in this direction goes a little further
by allowing also non-generic length vectors. Secondly we show that Walker’s
conjecture in its original form holds for normal length vectors. We also prove
results in the spirit of the Walker conjecture for the spatial polygon spaces.

To state the Walker conjecture in full detail we need to explain the depen-
dance of the configuration space M` on the length vector

` = (l1, . . . , ln) ∈ Rn
+. (2)

Here Rn
+ denotes the set of vectors in Rn having nonnegative coordinates.

Clearly, M` = Mt` for any t > 0. Also, it is easy to see that M` is diffeo-
morphic to M`′ if `′ is obtained from ` by permuting coordinates.

Denote by A = A(n−1) ⊂ Rn
+ the interior of the unit simplex, i.e. the set

given by the inequalities l1 > 0, . . . , ln > 0,
∑

li = 1. One can view A as the

1See also thesis of S. H. Niemann [13] written in Oxford in 1978.
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quotient space of Rn
+ with respect to R+-action. For any subset J ⊂ {1, . . . , n}

we denote by HJ ⊂ Rn the hyperplane defined by the equation
∑

i∈J

li =
∑

i/∈J

li. (3)

One considers the following stratification

A(0) ⊂ A(1) ⊂ . . . ⊂ A(n−1) = A (4)

Here the symbol A(i) denotes the set of points ` ∈ A lying in ≥ n−1− i linearly
independent hyperplanes HJ for various subsets J . A stratum of dimension k
is a connected component of the complement A(k) − A(k−1). By Theorem 1.1
of [7], the smooth spaces2 M` and M`′ are diffeomorphic if the vectors ` and `′

belong to the same stratum.
Strata of dimension n−1 are called chambers. A vector ` lying in a chamber

is called generic. Non-generic length vectors lie in walls separating chambers and
hence satisfy linear equations (3) for some J . A linkage with non-generic length
vector is characterized by the property of allowing collinear configurations, i.e.
such that all its bars are parallel to each other.

Walker’s conjecture: Let `, `′ ∈ A be two generic length vectors; if the
corresponding polygon spaces M` and M`′ have isomorphic graded integral coho-
mology rings then for some permutation σ : {1, . . . , n} → {1, . . . , n} the length
vectors ` and σ(`′) lie in the same chamber of A.

In this paper we prove that Walker’s conjecture holds for polygon spaces in
R3 (see Theorem 3) assuming that the number of links n is distinct from 4.
We also prove that the conjecture is true for planar polygon spaces in several
slightly modified forms, see Theorems 1, 2, 4.

2 Statements of the main results

Polygon spaces (1) come with a natural involution

τ : M` → M`, τ(u1, . . . , un) = (ū1, . . . , ūn) (5)

induced by complex conjugation. Geometrically, this involution associates to a
polygonal shape the shape of the reflected polygon. The fixed points of τ are
the collinear configurations, i.e. degenerate polygons. In particular we see that
τ : M` → M` has no fixed points iff the length vector ` is generic. Clearly, τ
induces an involution

τ∗ : H∗(M`) → H∗(M`) (6)

on the cohomology of M` with integral coefficients.3

2i.e. manifolds with singularities.
3In this paper we adopt the following convention: we skip Z from notation when dealing

with homology and cohomology with integral coefficients. We indicate explicitly all other
coefficient groups.
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Theorem 1. Suppose that two length vectors `, `′ ∈ A(n−1) are ordered, i.e.
` = (l1, l2, . . . , ln) with 0 < l1 ≤ l2 ≤ . . . ≤ ln and similarly for `′. If there exists
a graded ring isomorphism of the integral cohomology algebras

f : H∗(M`) → H∗(M`′)

commuting with the action of the involution (6) then ` and `′ lie in the same
stratum of A. In particular, under the above assumptions the moduli spaces M`

and M`′ are τ -equivariantly diffeomorphic.

Let `, `′ ∈ A(n−1) be length vectors (possibly non-generic) lying in the same
stratum. Then there exists a diffeomorphism4 φ : M`′→M` which is equivariant
with respect to the involution τ . Such a diffeomorphism was constructed in the
proof of [7, Theorem 1.1], see [7, p. 36]; compare [7, Remark 3.3].

Let M̄` denote the factor-space of M` with respect to the involution (5). An
alternative definition of M̄` is given by

M̄` = {(u1, . . . , un) ∈ S1 × . . .× S1;
n∑

i=1

liui = 0}/O(2). (7)

Theorem 2. Suppose that two generic ordered length vectors `, `′ ∈ An−1 are
such that there exists a graded algebra isomorphism

f : H∗(M̄`;Z2) → H∗(M̄`′ ;Z2)

of cohomology algebras with Z2 coefficients. If n 6= 4 then ` and `′ lie in the
same chamber of A.

Theorem 2 is false for n = 4. Indeed, for the length vectors ` = (1, 1, 1, 2)
and `′ = (1, 2, 2, 2) the manifolds M̄` and M̄`′ are circles. However M` and M`′

are not diffeomorphic (the first is S1 and the second is S1 t S1) and thus ` and
`′ do not lie in the same chamber of A.

In this paper we also prove a result in the spirit of Walker’s conjecture for
the spatial polygon spaces. These spaces are defined by

N` = {(u1, . . . , un) ∈ S2 × . . .× S2;
n∑

i=1

liui = 0}/SO(3). (8)

Points of N` parameterize the shapes of n-gons in R3 having sides of length
` = (l1, . . . , ln). If the length vector ` is generic then N` is a closed smooth
manifold of dimension 2(n− 3).

Theorem 3. Suppose that two generic ordered length vectors `, `′ ∈ A(n−1) are
such that there exists a graded algebra isomorphism

f : H∗(N`;Z2) → H∗(N`′ ;Z2)

of cohomology algebras with Z2 coefficients. If n 6= 4 then ` and `′ lie in the
same chamber of A. This theorem remains true if the cohomology algebras are
taken with integral coefficients.

4”Diffeomorphism” refers to the smooth structure on M`, see [7, Section 2.2]
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Theorem 3 is false for n = 4: for length vectors ` = (1, 1, 1, 2) and `′ =
(1, 2, 2, 2) lying in different chambers (see above) the manifolds N` and N`′ are
both diffeomorphic to S2.

To state another main result of this paper we need to introduce some ter-
minology. First we recall the notions of short, long and median subsets, see
[6], [2]. Given a length vector ` = (l1, l2, . . . , ln), a subset of the set of indices
J ⊂ {1, 2, . . . , n} is called short if

∑

i∈J

li <
∑

i/∈J

li.

The complement of a short subset is called long. A subset J is called median if
∑

i∈J

li =
∑

i/∈J

li.

The following simple fact relates these notions to stratification (4).

Lemma 1. Two length vectors `, `′ ∈ A(n−1) lie in the same stratum of A(n−1)

if and only if, for all subsets J ⊂ {1, 2, . . . , n}, J is short with respect to ` if
and only if it is short with respect to `′.

Proof. J is long iff the complement J̄ is short and J is median iff neither J nor
J̄ is short. Hence, vectors `, `′ satisfying conditions of the lemma have identical
families of short, long and median subsets. This clearly implies that ` and `′ lie
in the same stratum of A.

Definition 1. A length vector ` = (l1, . . . , ln) is called normal if

∩J 6= ∅ (9)

where J runs over all subsets J ⊂ {1, . . . , n} with |J | = 3 which are long with
respect to `. A stratum of A(n−1) is called normal if it contains a normal vector.

Clearly, any vector lying in a normal stratum is normal. A length vector
` with the property that all subsets J of cardinality 3 are short or median is
normal since then the intersection (9) equals {1, . . . , n} as the intersection of
the empty family.

If ` = (l1, . . . , ln) where 0 < l1 ≤ l2 ≤ . . . ≤ ln then ` is normal if and only
if the set {n − 3, n − 2, n − 1} is short or median with respect to `. Indeed, if
this set is long then the sets {n− 3, n− 2, n}, {n− 3, n− 1, n}, {n− 2, n− 1, n}
are long as well and the intersection of these four sets of cardinality three is
empty. On the other hand, if the set {n−3, n−2, n−1} is short or median then
any long subset of cardinality three J ⊂ {1, . . . , n} contains n and therefore the
intersection (9) also contains n.

Examples of non-normal length vectors are (1, 1, 1, 1, 1) (for n = 5) and
(1, 1, 2, 2, 2, 3) for n = 6. Only 7 chambers out 21 are normal for n = 6. However,
for large n it is very likely that a randomly selected length vector is normal.
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For n = 9, where there are 175429 chambers up to permutation, 86% of them
are normal. It is shown in [3] that the (n− 1)-dimensional volume of the union
Nn ⊂ An−1 of all normal chambers satisfies

vol(An−1 −Nn)
vol(An−1)

<
24n6

2n
,

i.e. for large n the relative volume of the union of non-normal chambers is
exponentially small.

Theorem 4. Suppose that `, `′ ∈ A(n−1) are two ordered length vectors such
that there exists a graded algebra isomorphism between the integral cohomology
algebras H∗(M`) → H∗(M`′). Assume that one of the vectors `, `′ is normal.
Then the other vector is normal as well and ` and `′ lie in the same stratum of
the simplex A.

Consider the action of the symmetric group Σn on the simplex A(n−1) in-
duced by permutations of vertices. This action defines an action of Σn on the
set of strata and chambers and we denote by cn and by c∗n the number of dis-
tinct Σn-orbits of chambers (or chambers consisting of normal length vectors,
respectively).

Theorems 1 - 4 imply:

Theorem 5. (a) For n 6= 4 the number of distinct diffeomorphism types of
manifolds N`, where ` runs over all generic vectors of A(n−1), equals cn;

(b) for n 6= 4 the number of distinct diffeomorphism types of manifolds M̄`,
where ` runs over all generic vectors of A(n−1), equals cn;

(c) the number xn of distinct diffeomorphism types of manifolds M`, where
` runs over all generic vectors of A(n−1), satisfies c∗n ≤ xn ≤ cn.

(d) the number of distinct diffeomorphism types of manifolds with singular-
ities M`, where ` varies in A(n−1), is bounded above by the number of distinct
Σn-orbits of strata of A(n−1) and is bounded below by the number of distinct
Σn-orbits of normal strata of A(n−1).

Statements (a), (b), (c), (d) remain true if one replaces the words “diffeo-
morphism types” by “homeomorphism types” or by “homotopy types”.

It is an interesting combinatorial problem to find explicit formulae for the
numbers cn and c∗n and to understand their behavior for large n . For n ≤ 9,
the numbers cn have been determined in [7], by giving an explicit list of the
chambers. The following table gives the values cn and c∗n for n ≤ 9:

n 3 4 5 6 7 8 9

cn 2 3 7 21 135 2470 175428

c∗n 1 1 2 7 65 1700 151317

Proofs of Theorems 1 - 4 are given in §§5, 6, 7. In §§3, 4 we describe some
auxiliary results which are used in the proofs.
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3 The balanced subalgebra

In this section we will study the action of the involution (5) on the integral
cohomology of planar polygon space M`.

An integral cohomology class u ∈ Hi(M`) will be called balanced if

τ∗(u) = (−1)deg uu. (10)

The product of balanced cohomology classes is balanced. The set of all balanced
cohomology classes forms a graded subalgebra

B∗
` ⊂ H∗(M`). (11)

In this section we describe explicitly the structure of the balanced subalgebra
in terms of the length vector `.

Let us assume that the length vector ` is ordered, i.e. it satisfies

0 ≤ l1 ≤ l2 ≤ . . . ≤ ln. (12)

It is well known [8] that M` is empty if and only if the subset J = {n} is long.
Next we describe specific cohomology classes

X1, X2, . . . , Xn−1 ∈ H1(M`). (13)

Consider the map φi : M` → S1 given by

φi(u1, u2, . . . , un) = uiu
−1
n ∈ S1.

Here i = 1, 2, . . . , n and φi associates to a configuration the angle between
the links number i and n. We denote by Xi ∈ H1(M`) the induced class
Xi = φ∗i ([S

1]) where [S1] denote the fundamental class of the circle oriented in
the usual anticlockwise manner.

Since the complex conjugation reverses the orientation of the circle, we ob-
tain that τ∗(Xi) = −Xi, i.e. cohomology classes Xi are balanced.

Theorem 6. Assume that ` = (l1, . . . , ln) satisfies (12) and the single element
subset {n} is short. Then the balanced subalgebra B∗

` , viewed as a graded skew-
commutative ring, is generated by the classes X1, . . . , Xn−1 ∈ H1(M`) and is
isomorphic to the factor ring

E(X1, . . . , Xn−1)/I

where E(X1, . . . , Xn−1) denotes the exterior algebra having degree one genera-
tors X1, . . . , Xn−1 and I ⊂ E(X1, . . . , Xn−1) denotes the ideal generated by the
monomials

Xr1Xr2 . . . Xri ,

one for each sequence 1 ≤ r1 < r2 < r3 < . . . < ri < n such that the subset

{r1, . . . , ri} ∪ {n} ⊂ {1, . . . , n}
is long.
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Figure 1: Robot arm.

Proof. Consider the robot arm with n bars of length l1, . . . , ln. It is a simple
mechanism consisting of bars (links) connected by revolving joints. The initial
point of the robot arm is fixed on the plane. The moduli space of a robot arm
(i.e. the space of its possible shapes) is

W = {(u1, . . . , un) ∈ S1 × . . .× S1}/S1. (14)

Clearly, W is diffeomorphic to a torus Tn−1 of dimension n − 1. A diffeomor-
phism can be specified, for example, by assigning to a configuration (u1, . . . , un)
the point (u1u

−1
n , u2u

−1
n , . . . , un−1u

−1
n ) ∈ Tn−1 (measuring angles between the

directions of the last and the other links). The moduli space of closed polygons
M` (where ` = (l1, . . . , ln)) is naturally embedded into W . We will study the
homomorphism

j∗ : H∗(W ) → H∗(M`) (15)

induced by the inclusion j : M` → W on cohomology with integral coeffi-
cients. Since W = Tn−1, the cohomology H∗(W ) is an exterior algebra in n− 1
generators X1, . . . , Xn−1. Here Xi ∈ H1(W ) is the cohomology class repre-
sented by the map fi : W → S1 given by fi(u1, . . . , un) = uiu

−1
n ∈ S1, where

i = 1, . . . , n− 1.
Theorem 6 would follow once we have shown that:

(i) The image of (15) equals the balanced subalgebra B∗
` ;

(ii) The kernel of (15) coincides with the ideal I (described above) after the
identification H∗(W ) = E(X1, . . . , Xn−1).

To prove statement (i) we note that the involution τ : M` → M` is the
restriction of a natural involution τ : W → W given by formula (5).

Lemma 2. The action of the involution τ∗ on the integral cohomology groups
Hi(W ) and Hi(W,M`) coincides with multiplication by (−1)i, for any i =
0, 1, . . . , n− 1.
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We postpone the proof of Lemma 2 and continue with the proof of Theo-
rem 6. Consider the homomorphism

ψi : Hi(W,M`) → Hi(W ) (16)

induced by the inclusion W → (W,M`). The exact sequence of the pair (W,M`)
gives a short exact sequence

0 → coker(ψi) → Hi(M`)
δ→ ker(ψi+1) → 0. (17)

The involution τ∗ acts on the exact sequence (17) and according to Lemma 2
the action of τ∗ is (−1)i on coker(ψi) and (−1)i+1 on kerψi+1. This implies that
the balanced subalgebra Bi

` coincides with the image of coker(ψi) in Hi(M`).
In other words, we have established statement (i).

To prove statement (ii) we show that the image of ψi (see (16)) is generated
by the monomials Xr1 . . . Xri

where 1 ≤ r1 < r2 < . . . < ri < n are such that
the subset {r1, . . . , ri} ∪ {n} is long.

For a subset J = {r1, r2, . . . , ri, n} where 1 ≤ r1 < r2 < . . . < ri < n, we
denote the corresponding product Xr1 . . . Xri by XJ . The cohomology class
XJ ∈ Hi(W ) is realized by the continuous map ψJ : W → T i given by

(u1, . . . , un) 7→ (
ur1

un
,
ur2

un
, . . .

uri

un
) ∈ T i.

The preimage of the point (1, 1, . . . , 1) ∈ T i under ψJ equals the variety of all
states of the robot arm such that all links r1, . . . , ri are parallel to the last link
n. Denote this variety by WJ ⊂ W . Clearly, WJ is diffeomorphic to a torus of
dimension n − |J | = n − 1 − i. The submanifold WJ is Poincaré dual to the
cohomology class XJ . For obvious geometric reasons, a subset J ⊂ {1, . . . , n}
is long if and only iff the corresponding submanifold WJ ⊂ W is disjoint from
M`.

In the following commutative diagram

Hi(W,M`)
ψi //

'
²²

Hi(W )

'
²²

Hn−1−i(W −M`)
φn−1−i // Hn−1−i(W )

(18)

the vertical maps are Poincaré duality isomorphisms. Here φn−1−i is induced by
the inclusion W−M` → W . In §5 of [2] it was shown that the image of φn−1−i is
generated by the homology classes [WJ ] ∈ Hn−1−i(W ) of the submanifolds WJ

where J ⊂ {1, . . . , n} runs over all long subsets of cardinality i + 1 with n ∈ J .
Since {n} is not long, the case i = 0 is excluded by our assumption. Hence,
the image of ψi is generated by cohomology classes XJ where J ⊂ {1, . . . , n} is
long, |J | = i + 1 and n ∈ J . This completes the proof.
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Proof of Lemma 2. Our statement concerning the action of the involution τ on
Hi(W ) is quite obvious since W is a torus Tn−1 = S1 × S1 × . . .× S1 and the
involution acts as the complex conjugation on each of the circles.

To prove our claim concerning the action of the involution on Hi(W,M`)
consider the robot arm distance map (the negative square of the length of the
dotted line shown on Figure 1)

f` : W → R, f`(u1, . . . , un) = −
∣∣∣∣∣

n∑

i=1

liui

∣∣∣∣∣

2

. (19)

The maximum of f` is achieved on the moduli space M` = f−1
` (0) ⊂ W . The

critical points of f` lying in W−M` are exactly collinear configurations which can
be labeled by long subsets J ⊂ {1, . . . , n}, see Lemma 7 of [2]. The involution
τ : W → W preserves the values of f` and the fixed points of τ are collinear
configurations of the robot arm (see §4, 5 of [2]). Choose a real number a such

−
(∑

i∈J

li −
∑

i/∈J

li

)2

< a < 0

for any long subset J ⊂ {1, . . . , n}. Then the manifold (with boundary) N =
f−1

` ([a, 0]) contains M` as a deformation retract, see text after Corollary 10 in
[2]. The set W a = f−1

` ((−∞, a]) is a compact manifold with boundary and
there is a natural isomorphism Hi(W,M`) → Hi(W a, ∂W a) commuting with
the action of the involution. Lemma 2 follows once we show that τ∗x = (−1)ix
for x ∈ Hi(W a, ∂W a).

Let u ∈ Hn−1(W a, ∂W a) denote the fundamental class. τ acts as multipli-
cation by −1 on the tangent space of every fixed point (see (14) in [2]) which
means that τ has degree (−1)n−1. Hence, τ∗(u) = (−1)n−1u. For a cohomology
class x ∈ Hi(W a, ∂W a) we have

(−1)n−1x ∩ u = x ∩ τ∗(u) = τ∗(τ∗x ∩ u) = (−1)n−1−iτ∗x ∩ u ∈ Hn−1−i(W a).

Here the last equality uses Theorem 4 from [2]. This shows (by Poincaré duality)
that τ∗x = (−1)ix completing the proof.

4 Poincaré duality defect

If the length vector ` = (l1, . . . , ln) is not generic then the space M` has finitely
many singular points. In this section we show that for a non generic ` the space
M` fails to satisfy the Poincaré duality and we describe explicitly the defect.
Denote by

Ki
` ⊂ Hi(M`) (20)

the set of all cohomology classes u ∈ Hi(M`) such that

uw = 0 for any w ∈ Hn−3−i(M`).

10



It is obvious that K∗
` = ⊕Ki

` is an ideal in H∗(M`).
Recall, that by [2], for n > 3 one has

H0(M`) = Hn−3(M`) = Z

if and only if the sets {n− 2, n− 1} and {n} are short with respect to `.

Theorem 7. Suppose that ` = (l1, l2, . . . , ln) is such that 0 < l1 ≤ l2 ≤ . . . ≤ ln
and H0(M`) = Hn−3(M`) = Z. Then one has

K∗
` ⊂ B∗

` ,

i.e. all cohomology classes in K∗
` are balanced. Moreover, Ki

` viewed as a free
abelian group, has a free basis given by the monomials of the form

Xr1Xr2 . . . Xri
(21)

where 1 ≤ r1 < r2 < . . . < ri < n are such that the subset

{r1, r2, . . . , ri, n} ⊂ {1, . . . , n} (22)

is median with respect to `.

Proof of Theorem 7. Replace the length vector ` by a generic vector `′ which is
obtained by enlarging slightly the longest link ln, i.e. `′ = (l′1, l

′
2, . . . , l

′
n) where

l′i = li for i = 1, . . . , n−1 and l′n = ln + ε. We assume that ε > 0 is so small that
the vectors ` and `′ have the same set of short and long subsets J ⊂ {1, . . . , n}
while any subset J ⊂ {1, . . . , n} containing n which is median with respect to `
becomes long with respect to `′.

Below we construct a ring epimorphism

F : H∗(M`) → H∗(M`′) (23)

having the following properties:
(a) F is an isomorphism in dimensions 0 and n− 3;
(b) one has

F (Xi) = X ′
i, i = 1, . . . , n− 1 (24)

where Xi ∈ H1(M`), X ′
i ∈ H1(M`′) denote generators (13);

(c) the rank of the kernel of F : Hi(M`) → Hi(M`′) equals the number of
subsets J ⊂ {1, . . . , n} of cardinality i + 1 containing n which are median with
respect to `.

Let us show that the existence of such F implies the statement of Theorem
7. We claim that K∗

` coincides with the kernel of F . Indeed, if u ∈ Hi(M`) does
not lie in Ki

` then uw 6= 0 for some w ∈ Hn−3−i(M`) and applying F we find
that F (u)F (w) 6= 0, i.e. u /∈ kerF . Conversely, if F (u) 6= 0 then F (u)w′ 6= 0 for
some w′ ∈ Hn−3−i(M`′) (since M`′ is a closed manifold without singularities).
Using the surjectivity of F we can write w′ = F (w) for some w ∈ Hi(M`) and
therefore F (uw) 6= 0 implying uw 6= 0, i.e. u /∈ Ki

`.
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Using property (b) and the description of the balanced subalgebra given in
Theorem 6 we see that all monomials (21), such that the set (22) is median
with respect to `, are mapped trivially by F . Property (c) implies that such
monomials form the whole kernel kerF , proving Theorem 7.

To construct F with properties mentioned above consider the robot arm
with links l1, l2, . . . , ln−1 and its configuration space Tn−1 = S1×S1× . . .×S1,
(n− 1 times). Consider the map

f : Tn−1 → R2 given by f(u1, . . . , un−1) =
n−1∑

i=1

liui (25)

where ui ∈ S1. Denote by U the preimage of the positive real axis R+ ⊂ R2

with respect to f , i.e. U = f−1(R+). It is a manifold of dimension n−2 which is
diffeomorphic to the moduli space of all non-closed shapes of the robot arm with
n−1 links l1, . . . , ln−1. In particular we see that U is canonically embedded into
the torus Tn−1 and therefore we have coordinate projections φi : U → S1 where
i = 1, . . . , n− 1. The cohomology class Xi ∈ H1(U) induced by φi “measures”
the angle between the link number i and the positive real axis.

The function g = f |U : U → R+ is Morse (see [5] and [2]) and its critical
points are configurations cI ∈ U with ui = ±1 which can be labeled by subsets
I ⊂ {1, . . . , n− 1} satisfying

∑
i∈I li >

∑
i/∈I li. The critical value g(cI) equals

g(cI) =
∑

i∈I

li −
∑

i/∈I

li

and the Morse index of g at cI equals |I| − 1, see [5], Theorem 3.2.
We see that ln ∈ R+ is a critical value of g and the critical level set g−1(ln) ⊂

U is exactly the polygon space M`. The critical points of g lying in g−1(ln) can
now be relabeled by subsets J ⊂ {1, . . . , n} containing n which are median with
respect to `. The Morse index of such a critical point is n− |J | − 1.

Similarly, one has g−1(l′n) = M`′ . It is a regular level of g. Note that the
interval (ln, l′n) contains no critical values of g as follows from our assumption
concerning ε = l′n − ln.

Consider the preimage V = g−1[ln, l′n]. Clearly V is a cobordism ∂V =
M` tM`′ which has Morse type singularities along the lower boundary M`. A
standard construction of Morse theory (using the negative gradient flow) gives
a deformation retraction of V onto M`; in other words, the inclusion M` → V is
a homotopy equivalence. We denote by F the map defined by the commutative
diagram

Hi(V )
'

zzttttttttt

%%JJJJJJJJJ

Hi(M`)
F // Hi(M`′)

where both inclined arrows are induced by the inclusions M` → V and M`′ → V .

12



Clearly F is a ring homomorphism having property (b) (see above), i.e.
F (Xi) = X ′

i for all i = 1, . . . , n− 1.
The homological exact sequence of the pair (V, M`′), in which one replaces

H∗(V ) by H∗(M`), gives the following exact sequence

. . . → Hi(V, M`′)
α→ Hi(M`)

F→ Hi(M`′)
δ→ Hi+1(V, M`′) → . . . (26)

Here Hi(V,M`′) is a free abelian group of rank equal the number of critical
points of index dim V − i = n − 2 − i lying in g−1(ln) = M`. In other words,
the rank of Hi(V, M`′) equals the number of subsets J ⊂ {1, . . . , n} with n ∈ J ,
|J | = i + 1, which are median with respect to `. Hence we see that the rank of
the kernel of F : Hi(M`) → Hi(M`′) is less or equal than the number of such
median subsets. On the other hand, using F (Xi) = X ′

i and Theorem 6 applied
to M` and M`′ , we find that all monomials (21) with (22) lie in this kernel. Here
we use the fact that any subset J containing n, which is median with respect
to `, is long with respect to `′.

We conclude that α is injective and δ = 0. In other words, we obtain that
F is an epimorphism and its kernel has rank as stated in (c).

The remaining property (a) follows from (c) using our assumption that
H0(M`) = Hn−3(M`) = Z.

5 Proof of Theorem 1

Given ` ∈ A(n−1), denote by S0(`) the family of subsets J ⊂ {1, . . . , n} such
that n /∈ J and J is short with respect to `. Similarly, denote by S1(`) the
family of subsets J ⊂ {1, . . . , n} such that n ∈ J and J is short with respect to
`.

Lemma 3. Let `, `′ ∈ A(n−1) be two ordered length vectors, i.e. ` = (l1, . . . , ln)
where 0 < l1 ≤ . . . ≤ ln and similarly for `′. If for some permutation σ :
{1, . . . , n} → {1, . . . , n} with σ(n) = n and for ν = 0 or 1 one has σ(Sν(`)) =
Sν(`′) then Sν(`) = Sν(`′).

Proof. Let i be the smallest number such that σ(i) > i. Then σ(k) = k for all
k < i. Let j = σ(i) (note that j > i) and σ′ = α ◦ σ where α = (ij) denotes the
transposition of i and j. Observe that σ(k) = σ′(k) for all k 6= i, r where r > i
is such that σ(r) = i. We want to show that

σ(Sν(`)) = Sν(`′), (27)

where ν = 0 or ν = 1, implies that

σ′(Sν(`)) = Sν(`′). (28)

Once this implication has been established, Lemma 3 follows by induction since
after several iterations the permutation σ will be replaced by the identity per-
mutation.

13



If J ⊂ Sν(`) is such that either i ∈ J and r ∈ J , or i /∈ J and r /∈ J then
σ(J) = σ′(J) and hence σ′(J) ∈ Sν(`′) by (27). Consider now the case when
i ∈ J and r /∈ J . Then σ′(J) is obtained from σ(J) by adding i and removing j.
Since σ(J) is short with respect to `′ and l′j ≥ l′i, we see that σ′(J) is short with
respect to `′. The remaining possibility is i /∈ J and r ∈ J . Then σ′(J) = σ(I)
where I is obtained from J by adding i and removing r. If J is short with
respect to ` then I is short as well (since r > i) and hence the set σ(I) = σ′(J)
is short with respect to `′ .

This argument shows that σ′(Sν(`)) ⊂ Sν(`′). Since by (27) the sets Sν(`)
and Sν(`′) have equal cardinality, this implies (28).

Next we state a theorem of J. Gubeladze [4] playing a key role in the proof of
our main results. We are thankful to Lucas Sabalka who brought this theorem
to our attention.

Let R be a commutative ring. Consider the ring R[X1, . . . , Xm] of poly-
nomials in variables X1, . . . , Xm with coefficients in R. A monomial ideal
I ⊂ R[X1, . . . , Xm] is an ideal generated by a set of monomials Xa1

1 . . . Xam
m

where ai ∈ Z, ai ≥ 0. The factor-ring R[X1, . . . , Xm]/I is called a discrete
Hodge algebra, see [1].

One may view the variables X1, . . . , Xm as elements of the discrete Hodge
algebra R[X1, . . . , Xm]/I. The main question is whether it is possible to recover
the relations Xa1

1 . . . Xam
m = 0 in R[X1, . . . , Xm]/I using only intrinsic algebraic

properties of the Hodge algebra. This question is known as the isomorphism
problem for commutative monoidal rings, it was solved in [4]:

Theorem 8 (J. Gubeladze [4], Theorem 3.1). Let R be a commutative ring
and {X1, . . . , Xm}, {Y1, . . . , Ym′} be two collections of variables. Assume that
I ⊂ R[X1, . . . , Xm] and I ′ ⊂ R[Y1, . . . , Ym′ ] are two monomial ideals such that
I ∩ {X1, . . . , Xm} = ∅ and I ′ ∩ {Y1, . . . , Ym′} = ∅ and factor-rings

R[X1, . . . , Xm]/I ' R[Y1, . . . , Ym′ ]/I ′

are isomorphic as R-algebras. Then m = m′ and there exists a bijective mapping

Θ : {X1, . . . , Xm} → {Y1, . . . , Ym}

transforming I into I ′.

Proof of Theorem 1. Suppose that ` = (l1, . . . , ln) ∈ A and `′ = (l′1, . . . , l
′
n) ∈

A are two length vectors such that there exists a graded ring isomorphism
between the integral cohomology algebras H∗(M`) → H∗(M`′) commuting with
the action of the involution τ , see (5), (6). We assume that ` = (l1, . . . , ln) and
`′ = (l′1, . . . , l

′
n) are ordered, i.e. l1 ≤ . . . ≤ ln, and l′1 ≤ . . . ≤ l′n. Our goal is

to show (as Theorem 1 states) that then the length vectors `, `′ lie in the same
stratum.

Theorem 1 is obviously true in the trivial case n = 3. The case n = 4 is
also trivial: in this case one has a complete classification of spaces M` (which
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are one-dimensional) and their topology is fully determined by Betti numbers
b0(M`) and b1(M`). Hence we will assume below that n > 4.

First we show that it is enough to prove Theorem 1 assuming that

H0(M`) = Hn−3(M`) = Z. (29)

To this end we recall the main result of [2] describing explicitly the Betti numbers
bk(M`). Let ak(`) and ãk(`) denote correspondingly the number of short and
median subsets J ⊂ {1, . . . , n} satisfying n ∈ J and |J | = k + 1. Then

bk(M`) = ak(`) + an−3−k(`) + ãk(`), (30)

see [2], Theorem 1. Using (30) we obtain that (29) is equivalent to two equations

a0(`) + an−3(`) + ã0(`) = 1, a0(`) + an−3(`) + ãn−3(`) = 1. (31)

If the subsets {n} and {n− 2, n− 1} are short with respect to ` then clearly
a0(`) = 1 while ã0(`) = an−3(`) = ãn−3(`) = 0; hence (29) holds in this case.

Consider now all possibilities when the assumptions discussed in the previous
paragraph are violated, i.e. when either n is not short or the set {n−2, n−1} is
not short. The table below displays Betti numbers b0 = b0(M`), b1 = b1(M`) and
bn−3 = bn−3(M`) and the set of all short subsets S = {J} where J ⊂ {1, . . . , n}
in each case. It follows that Betti numbers b0(M`), b1(M`) and bn−3(M`) fully
characterize each case since they determine the entire set of short subsets S,
compare Lemma 1.

This shows that Theorem 1 holds if (29) fails to hold since then the stratum
containing ` (equivalently, the family of short subsets with respect to `, by
Lemma 1) can be determined knowing only the Betti numbers in dimensions 0,
1 and n− 3.

Case b0 b1 bn−3 Short subsets S
n long 0 0 0 J ⊂ {1, . . . , n− 1}

n median 1 0 0 J  {1, . . . , n− 1}

n short 2 2n− 6 2 J ⊂ {1, . . . , n},
{n− 2, n− 1} long J contains at most

one of n− 2, n− 1, n
n short 1 2n− 6 2 J  {1, . . . , n− 3, n},

{n− 2, n− 1} median
{n− 2, n} long J ⊂ {1, 2, . . . , n− 3, n− 2},
{n− 1, n} long J ⊂ {1, 2, . . . , n− 3, n− 1}

n short 1 2n− 5 2 J  {1, . . . , n− 3, n},
{n− 2, n− 1} median
{n− 2, n} median J  {1, 2, . . . , n− 3, n− 1},
{n− 1, n} long J ⊂ {1, 2, . . . , n− 3, n− 2}

n short 1 2n− 4 2 J  {1, . . . , n− 3, n},
{n− 2, n− 1} median
{n− 2, n} median J  {1, 2, . . . , n− 3, n− 1},
{n− 1, n} median J  {1, 2, . . . , n− 3, n− 2}
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Below we give a proof of Theorem 1 assuming that (29) holds for ` and `′.
This is equivalent to the requirement that the sets {n} and {n − 2, n − 1} are
short with respect to ` and `′.

Since the isomorphism f : H∗(M`) → H∗(M`′) commutes with the action of
the involution τ∗ it gives a graded algebra isomorphism B∗

` → B∗
`′ between the

balanced subalgebras. In section §4 we introduced subgroups K∗
` ⊂ H∗(M`)

and K∗
`′ ⊂ H∗(M`′) measuring the failure of the Poincaré duality. Clearly f

must map K∗
` onto K∗

`′ since these groups are defined using the multiplicative
structure of the cohomology algebras.

The structure of B∗
` and K∗

` was described in Theorems 6 and 7. In particular
we know that K∗

` ⊂ B∗
` . We obtain the following diagram of isomorphisms

H∗(M`)
f→ H∗(M`′)

↑ ↑
B∗

`

f→ B∗
`′

↑ ↑
K∗

`

f→ K∗
`′

where the vertical maps are inclusions.
Now we apply Theorem 6 to the tensor products Z2 ⊗B∗

` and Z2 ⊗B∗
`′ . By

Theorem 6 they are discrete Hodge algebras

Z2 ⊗B∗
` = Z2[X1, . . . , Xn−1]/L, Z2 ⊗B∗

`′ = Z2[X ′
1, . . . , X

′
n−1]/L′.

Here L is the monomial ideal generated by the squares X2
r (for each r =

1, . . . , n− 1) and by the monomials Xr1Xr2 . . . Xrp for each sequence 1 ≤ r1 <
. . . < rp < n such that the subset {r1, . . . , rp} ∪ {n} ⊂ {1, . . . , n} is long with
respect to `. The ideal L′ is defined similarly with `′ replacing `.

Clearly, Xi ∈ L if and only if {i, n} is long. In this case one has Xj ∈ L for
all i ≤ j < n. Let i = i(`) denote the smallest index with the property Xi ∈ L.
We obtain that the balanced subalgebra Z2 ⊗ B∗

` ⊂ H∗(M`) is isomorphic to
Z2[X1, . . . , Xi−1]/I where I is the monomial ideal generated by the squares X2

r

(for each r = 1, . . . , i−1) and by the monomials Xr1Xr2 . . . Xrp for each sequence
1 ≤ r1 < . . . < rp < i such that the subset {r1, . . . , rp} ∪ {n} ⊂ {1, . . . , n} is
long with respect to `.

Similarly, one defines the number i′ = i(`′) and the balanced subalgebra
Z2 ⊗ B∗

`′ is isomorphic to a discrete Hodge algebra Z2[X ′
1, . . . , X

′
i′−1]/I ′ where

L′ is defined similarly to I with `′ replacing `.
Note that rk B1

` = i− 1 and rk B1
`′ = i′ − 1 and therefore one has i = i′.

Now we are in the situation of Theorem 8 of J. Gubeladze. We have two dis-
crete Hodge algebras Z2[X1, . . . , Xi−1]/I and Z2[X ′

1, . . . , X
′
i−1]/I ′ which are iso-

morphic. Besides we know that Xj /∈ I, X ′
j /∈ I ′ for j = 1, . . . , i−1. By Theorem

8 there exists a bijection Θ : {X1, . . . , Xi−1} → {X ′
1, . . . , X

′
i−1} transforming I

into I ′. This means that there exists a bijection θ : {1, . . . , i−1} → {1, . . . , i−1}
such that for any sequence 1 ≤ r1 < . . . < rp < i the subset {r1, . . . , rp, n} is
short or median with respect to ` if and only if {θ(r1), . . . , θ(rp), n} is short or
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median with respect to `′. Note that a short or median subset (with respect
to either length vector ` or `′) which contains n cannot contain any element j
satisfying i ≤ j < n. Let σ : {1, . . . , n} → {1, . . . , n} be defined by

σ(j) =
{

θ(j) for 1 ≤ j < i,
j for i ≤ j ≤ n.

We see that the length vectors ` and σ(`′) = (l′σ(1), . . . , l
′
σ(n)) have the same

family of long subsets containing n, or, equivalently, the same family of short
subsets not containing n.

As in Lemma 3, denote by S0(`) the family of subsets J ⊂ {1, . . . , n} such
that n /∈ J and J is short with respect to `. Denote by S1(`) the family of
subsets J ⊂ {1, . . . , n} such that n ∈ J and J is short with respect to `.

We see that S0(`) = S0(σ(`′)) = σ−1(S0(`′)). By Lemma 3 we obtain
S0(`) = S0(`′).

Theorem 7 combined with Theorem 6 imply that the algebra Z2⊗ (B∗
` /K∗

` )
is a discrete Hodge algebra

Z2 ⊗ (B∗
` /K∗

` ) = Z2[X1, . . . , Xn−1]/L̃

where L̃ ⊃ L is the monomial ideal generated by the squares X2
r (for each

r = 1, . . . , n − 1) and by the monomials Xr1Xr2 . . . Xrp for each sequence 1 ≤
r1 < . . . < rp < n such that the subset {r1, . . . , rp} ∪ {n} ⊂ {1, . . . , n} is long
or median with respect to `.

Similarly, Z2 ⊗ (B∗
`′/K∗

`′) = Z2[X1, . . . , Xn−1]/L̃′. The ideal L̃′ is defined
analogously to L̃ with vector `′ replacing `.

Repeating the arguments above, applying Theorem 8 of Gubeladze to the
isomorphism Z2 ⊗ (B∗

` /K∗
` ) → Z2 ⊗ (B∗

`′/K∗
`′) and using again Lemma 3 we

find that length vectors ` and `′ have identical sets of short subsets containing
n, i.e. S1(`) = S1(`′).

Lemma 4 below implies that ` and `′ lie in the same stratum of A. This
completes the proof.

Lemma 4. Two length vectors `, `′ ∈ A(n−1) lie in the same stratum of A if
and only if the following condition holds: a subset J ⊂ {1, . . . , n} containing
n is short (or median) with respect to ` if and only if it is short (or median,
correspondingly) with respect to `′.

Proof. In view of Lemma 1, we have to show that the condition mentioned in
the statement of the lemma implies that ` and `′ have identical families of short
subsets. This condition specifies short, median and long subsets containing n.
However, if n /∈ J then J is short, median or long iff J̄ is long, median or short,
correspondingly.

6 Proofs of Theorems 2 and 3

Let ` be a generic ordered length vector with n > 4. The planar polygon space
M̄` is defined as the factor of M` with respect to involution (5). Consider the
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factor-map π : M` → M̄`. Since we assume that ` is generic, π is a twofold
covering map. Let

w1(`) ∈ H1(M̄`;Z2)

denote its first Stiefel - Whitney class.

Lemma 5. There is a graded algebra isomorphism

Z2 ⊗B∗
` → H∗(M̄`;Z2)/(w1(`)). (32)

Here B∗
` ⊂ H∗(M`) denotes the balanced subalgebra, see §3.

Proof. Consider the induced homomorphism

π∗ : H∗(M̄`;Z2) → H∗(M`;Z2). (33)

We claim that:
(a) the kernel of π∗ coincides with the ideal (w1(`)) generated by the class

w1(`) and
(b) the image of π∗ coincides with the image of the balanced subalgebra B∗

` ⊂
H∗(M`;Z) under the coefficient homomorphism Z → Z2.

A presentation of the cohomology ring H∗(M̄`;Z2) in terms of generators
and relations is given in [6, Corollary 9.2]:

H∗(M̄`;Z2) = Z2[R, V1, . . . , Vn−1]/I`

where R and V1, . . . , Vn−1 are of degree 1 and I` is the ideal generated by the
three families of elements:

(R1) V 2
i + RVi where i = 1, . . . , n− 1,

(R2)
∏

i∈S

Vi where S ⊂ {1, . . . , n− 1} is such that S ∪ {n} is long,

(R3)
∑

S⊂L

R|L−S|−1
∏

i∈S

Vi where L ⊂ {1, . . . , n− 1} is L long.

The symbol S in (R3) runs over all subsets of L including the empty set. By
(R2) a term of the sum in (R3) vanishes if S ∪ {n} is long.

The class R coincides with w1(`) ∈ H1(M`;Z2), the first Stiefel-Whitney
class of the regular 2-cover π : M` → M̄` [6, Prop. 9.3]. Therefore, π∗(R) = 0.
The classes Vi, constructed in [6, Section 5], are Poincaré dual to the sub-
manifold of M̄` of those configurations where the i-th link is parallel to the last
one. Therefore, π∗(Vi) = Xi where Xi are generators (13). Hence the image of
π∗ lies in the balanced subalgebra. Note that every relation (R3) is a multiple
of R since the term

R|L−S|−1
∏

i∈S

Vi

either vanishes (if S ∪ {n} is long, see (R2)) or the exponent |L − S| − 1 is
positive. Therefore adding a relation R = 0 to (R1) - (R3) transforms it into
the presentation of the balanced subalgebra, see Theorem 6. This completes the
proof of our statements (a) and (b) concerning the homomorphism (33) which
imply Lemma 5.
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Proof of Theorem 2. Assume that ` is a generic ordered length vector. First
we note that the Stiefel - Whitney class w1(`) ∈ H1(M̄`;Z2) can be uniquely
determined using intrinsic algebraic properties of the algebra H∗

` = H∗(M̄`;Z2).
Consider the squaring map

H1
` → H2

` , where v 7→ v2, v ∈ H1
` . (34)

It is a group homomorphism and we claim that for n > 4 the Stiefel - Whitney
class u = w1(`) ∈ H1

` is the unique cohomology class u ∈ H1
` satisfying

v2 = vu, for all v ∈ H1
` . (35)

We will use the presentation of the ring H∗(M̄`;Z2) in terms of generators and
relations described in the proof of Lemma 5. The class R represents w1(`) ∈
H1(M̄`;Z2), see [6, Prop. 9.3]. Now, relation (R1) (see proof of Lemma 5) tells
us that (35) holds for all generators Vi. It is obviously true for R = w1(`) as
well. Hence (35) holds for u = R = w1(`) and for all v. To show uniqueness of
u satisfying (35) (here we use our assumption n > 4) suppose that u′ ∈ H1

` is
another class satisfying (35). Then w = u − u′ ∈ H1

` has the property that its
product with any class v ∈ H1

` vanishes. But we know that classes of degree
one generate H∗

` as an algebra (it follows from [6, Corollary 9.2]) and therefore,
using Poincaré duality, we obtain that w = 0 assuming that the class w is not
of top degree, i.e. if 1 < n− 3.

Suppose now that for two generic length vectors `, `′ there is a graded algebra
isomorphism f : H∗(M̄`;Z2) → H∗(M̄`′ ;Z2), n > 4. From the result of the
previous paragraph it follows that f(w1(`)) = w1(`′). We obtain that the factor
rings H∗(M̄`;Z2)/(w1(`)) corresponding to ` and `′ are isomorphic. By Lemma
5 we obtain that the rings Z2 ⊗ B∗

` and Z2 ⊗ B∗
`′ are isomorphic. Now, the

arguments of the proof of Theorem 1 show that ` and `′ lie in the same chamber
of A.

Proof of Theorem 3. By [6, Theorem 6.4], the cohomology ring of the spatial
polygon space H∗(N`;Z2) admits the same presentation as the presentation of
H∗(M̄`;Z2) described above with the only difference that now the variables
Vi and R are of degree 2. Hence, the existence of an algebraic isomorphism
H∗(N`;Z2) → H∗(N`′ ;Z2) implies the existence of an algebraic isomorphism
H∗(M̄`;Z2) → H∗(M̄`′ ;Z2) and our statement now follows from Theorem 2.

If the integral cohomology rings H∗(N`) and H∗(N`′) are isomorphic then
the cohomology rings with Z2 coefficients are isomorphic as well, since the inte-
gral cohomology has no torsion and therefore the Z2-cohomology is the tensor
product of the integral cohomology with Z2.

7 Proof of Theorem 4

Lemma 6. A length vector ` is normal if and only if H1(M`) = B1
` , i.e.

when all cohomology classes of degree one are balanced. Hence for a normal
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length vector the balanced subalgebra B∗
` coincides with the subalgebra of H∗(M`)

generated (as a unital algebra) by the set H1(M`) of one-dimensional cohomology
classes.

Proof of Lemma 6. Without loss of generality we may assume that {n} is short
since otherwise ` is normal and H1(M`) = 0. We will use arguments of the
proof of Theorem 6. Our aim is to show that ` is normal if and only if the
kernel of the homomorphism ψ2 (see (16) with i = 2) vanishes. Then the
desired equality H1(M`) = B1

` would follow from exact sequence (17) combined
with the arguments of the proof of Theorem 6. By looking at the commutative
diagram (18) we find that ψ2 is injective if and only if φn−3 is injective. By
Corollary 10 of [2] the kernel of ψ2 vanishes if and only if there are no long
subsets J ⊂ {1, . . . , n − 1} with |J | = 3. But this is equivalent to normality of
` as we have explained right after Definition 1.

Lemma 7. Assume that ` is a length vector satisfying b0(M`) = 1 = bn−3(M`).
Then ` is normal if and only if the (n− 3)-fold cup product

H ⊗H ⊗ . . .⊗H︸ ︷︷ ︸
n−3 times

→ Hn−3(M`), where H = H1(M`) (36)

vanishes.

Proof. If ` is normal then H = B1
` by Lemma 6. We will use the description of

the balanced subalgebra given by Theorem 6. We obtain that H is generated
by the classes X1, X2, . . . , Xn−1 and a product Xr1Xr2 . . . Xrn−3 vanishes if and
only if the set {r1, . . . , rn−3, n} is long. Since ` is normal, the set {n − 3, n −
2, n− 1} is median or long which implies that any subset J ⊂ {1, . . . , n− 1} of
cardinality 2 is short. This proves that the product (36) vanishes.

Conversely, suppose that ` is not normal. Then by Lemma 6 the group
H = H1(M`) contains a non-balanced element u, i.e. τ∗(u) 6= −u. Hence
u0 = u + τ∗(u) is nonzero and satisfies τ∗(u0) = u0. We claim that there exists
v ∈ Hn−4(M`) such that vu0 = w ∈ Hn−3(M`) is nonzero. If ` is generic this
claim follows from Poincaré duality. If ` is not generic, we proceed as in the
proof of Theorem 7 replacing ` by a close-by generic length-vector `′ which is
obtained by enlarging slightly the longest link ln, i.e. `′ = (l′1, l

′
2, . . . , l

′
n) where

l′i = li for i = 1, . . . , n − 1 and l′n = ln + ε. Here ε > 0 is so small that the
vectors ` and `′ have the same set of short and long subsets J ⊂ {1, . . . , n}
while any subset J ⊂ {1, . . . , n} containing n which is median with respect to
` becomes long with respect to `′. In the proof of Theorem 7 we constructed a
ring epimorphism F : H∗(M`) → H∗(M`′) which is an isomorphism in the top
dimension n−3 and is such that the kernel of F coincides with the subgroup K∗

`

which lies in B∗
` . Since u0 /∈ B1

` we obtain F (u0) 6= 0 and applying the Poincaré
duality (note that M`′ is a closed orientable manifold without singularities) we
find that F (u0)v0 6= 0 for some v0 ∈ Hn−4(M`′). Since F is an epimorphism we
may write v0 = F (v) and we see that u0v 6= 0 since F (u0v) 6= 0.

From our assumptions n > 3 and b0(M`) = 1 = bn−3(M`) it follows that the
sets {n − 2, n − 1} and {n} are short and then Theorem 6 implies that there
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are no balanced classes in the top dimensional cohomology group Hn−3(M`) '
Z. Since τ(w) = ±w we find τ∗(w) = −(−1)n−3w. Applying τ∗ we obtain
τ∗(v)u0 = (−1)n−4w and therefore

v0u0 = 2w where v0 = v + (−1)n−4τ∗(v). (37)

Since v0 is balanced (as is obvious from its definition (37)) it can be expressed
as a polynomial of degree n − 4 in H (by Theorem 6). Hence we see that the
(n− 3)-fold cup-product (36) is nonzero.

Proof of Theorem 4. We shall assume that n > 3 as for n = 3 our statement is
trivial. Suppose that ` is normal and there exists a graded algebra isomorphism
f : H∗(M`) → H∗(M`′). We want to show that `′ is also normal. Assume first
that b0(M`) = 1 = b1(M`). Then we may apply Lemma 7 which characterizes
normality in intrinsic algebraic terms of the cohomology algebra. Hence `′ must
be also normal.

If the condition b0(M`) = 1 = b1(M`) is violated for ` it is also violated
for `′. Examining the table in the proof of Theorem 1 we conclude that the
Betti numbers b0(M`) and b1(M`) determine then the family of short subsets
and hence the stratum of ` (by Lemma 1).

Next we apply Lemma 6 which implies that the isomorphism f : H∗(M`) →
H∗(M`′) maps the balanced subalgebra B∗

` isomorphically onto B∗
`′ since in

the case of a normal length vector the balanced subalgebra coincides with the
subalgebra generated by one-dimensional cohomology classes. One repeats the
arguments of the proof of Theorem 1 to conclude that then ` and `′ lie in the
same stratum.
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