
ON THE WHITEHEAD GROUP OF NOVIKOV RINGS
ASSOCIATED TO IRRATIONAL HOMOMORPHISMS

DIRK SCHÜTZ

Abstract. Given a homomorphism ξ : G → R we show that the natural map
i∗ : Wh(G) → Wh(G; ξ) from the Whitehead group of G to the Whitehead
group of the Novikov ring is surjective. The group Wh(G; ξ) is of interest for
the simple chain homotopy type of the Novikov complex. It also contains the
Latour obstruction for the existence of a nonsingular closed 1-form within a
fixed cohomology class ξ ∈ H1(M ;R), where M is a closed connected smooth
manifold.

1. Introduction

Given a group G and a homomorphism ξ : G → R to the additive group of real
numbers the Novikov ring ẐGξ is a completion of the ordinary group ring ZG.
Elements of ẐGξ can be thought of as functions λ : G → Z such that for every real
number r ∈ R there are only finitely many g ∈ G with λ(g) 6= 0 and ξ(g) ≥ r.
This ring arises naturally in the Morse theory of closed 1-forms on closed smooth
manifolds M and was introduced by Novikov [14] for injective ξ and more generally
by Sikorav [29]. A closed 1-form ω on M induces a homomorphism ξ = ξ[ω] :
π1(M) → R via its cohomology class. Provided that ω satisfies a Morse condition
one can define the so called Novikov complex C∗(M,ω). This is a chain complex
which is finitely generated free over ẐGξ, where G is a quotient of π1(M) by a
normal subgroup contained in ker ξ. For details on several constructions we refer
the reader to Novikov [15], Latour [12], Pajitnov [17], Farber [6] or Schütz [25]. It
turns out that its chain homotopy type is that of C∗(M ; ẐGξ).
In recent years there has been considerable interest also in the simple homotopy
type of the Novikov complex, see Latour [12], Pajitnov [18], Damian [4], Schütz [24]
or Cornea and Ranicki [3]. Notably Latour [12] introduced the Whitehead group of
the Novikov ring Wh(G; ξ), a quotient of K1(ẐGξ) by so called trivial units. These
trivial units consist of ±g ∈ ẐGξ for all g ∈ G and units of the form 1 − a ∈ ẐGξ

where a : G → Z satisfies a(g) = 0 for ξ(g) ≥ 0.
An important feature of this group is that it contains an obstruction for the exis-
tence of a nonsingular closed 1-form ω in a fixed cohomology class. More precisely,
Latour [12] gives two conditions for a nonzero cohomology class ξ ∈ H1(M ;R). The
first, homotopy theoretical condition, assures that the Novikov homology vanishes.
The second condition is then that the Whitehead torsion of the Novikov complex,
measured in Wh(G; ξ), vanishes. We give a brief account of this in Section 7.
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For this reason we would like to get a better understanding of Wh(G; ξ). There is
an obvious homomorphism i∗ : Wh(G) → Wh(G; ξ) from the ordinary Whitehead
group of G induced by the inclusion ZG ⊂ ẐGξ. Although it is known that Wh(G)
can be very complicated, there are also many examples where this group vanishes.
The main theorem of this paper states that i∗ is surjective, so that the vanishing
of Wh(G) indeed implies the vanishing of Wh(G; ξ).

Theorem 1.1. Let G be a group and ξ : G → R a homomorphism. Then i∗ :
Wh(G) → Wh(G; ξ) is surjective.

In the case where ξ factors through the integers this theorem was known before.
Namely it follows immediately from the Main Theorem in Pajitnov and Ranicki
[20]. In the case where G = H × Z and ξ is projection to Z it also follows from
Pajitnov [18, Prop.7.7].
In [20] actually more is shown. If ξ is a homomorphism to the integers, then the
Novikov ring can be identified with a twisted Laurent series ring Aρ((t)). Now
Pajitnov and Ranicki obtain a direct sum decomposition for K1(Aρ((t))) analogous
to the Bass-Heller-Swan decomposition of K1(A[t, t−1]). From this decomposition,
which we describe in Section 7, it follows that i∗ is not an isomorphism in general.
Yet Wh(G; ξ) cannot be significantly less complicated than Wh(G), as the next
theorem shows.

Theorem 1.2. Let G be a group and ξ : G → R a homomorphism. Then the
diagonal map Wh(G) → Wh(G; ξ)⊕Wh(G;−ξ) is injective.

If ξ factors through the integers, this follows immediately from the decomposition
of Pajitnov and Ranicki [20], and the methods used to prove Theorem 1.1 allow us
to deduce the general case from that.
In order to prove Theorem 1.1 it is not important that the Novikov ring is formed
over the integers. Also there is no need to factor out trivial units of the form ±g for
g ∈ G as they are already in the group ring. Let W ξ be the subgroup of K1(R̂Gξ)
generated by units of the form 1− a ∈ R̂Gξ with a(g) = 0 for ξ(g) ≥ 0. The more
general version then reads

Theorem 1.3. Let G be a group, ξ : G → R a homomorphism and R a ring with
unit. Then i∗ : K1(RG) → K1(R̂Gξ)/W ξ is surjective.

In order to prove Theorem 1.3 we want to apply the methods of Pajitnov and
Ranicki [20]. This does not work directly since their techniques make strong use
of the Laurent series ring description. But in general the Novikov ring cannot
be described as a twisted Laurent series ring in several variables. Instead we will
approximate the Novikov ring by subrings to which the techniques of [20] can be
applied inductively.
We start by looking at finitely generated groups G. Then G/ ker ξ ∼= Zk for some
k ≥ 1. The first step is to show that every τ0 ∈ K1(R̂Gξ)/W ξ can be represented by
a matrix A invertible over a subring Λ0 depending on τ0. This ring has the property
that there exist surjective homomorphisms ξi : G → Z for i = 1, . . . , k such that Λ0

is also a subring of every R̂Gξi . Now RGξi can be identified as a twisted Laurent
series ring and in particular has a twisted power series subring denoted R̂G

o

ξi
. We
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then get a sequence of subrings Λk ⊂ . . . ⊂ Λ1 ⊂ Λ0, where Λj is also a subring of
R̂G

o

ξi
for i ≤ j.

The second step is then to show that given τj ∈ K1(Λj), we can find τG ∈ K1(RG)
and τj+1 ∈ K1(Λj+1) such that i∗τj = i∗τG + i∗τj+1 ∈ K1(R̂Gξ). This implies the
theorem since i∗τk ∈ W ξ.
The case of a group which is not finitely generated is deduced by a direct limit
argument.

2. Novikov rings

Let G be a group, ξ : G → R a homomorphism to the additive group of real
numbers and R a ring with unit. We denote by RG the abelian group of all functions
λ : G → R. For λ ∈ RG denote supp λ = {g ∈ G |λ(g) 6= 0}.

Definition 2.1. The Novikov ring R̂Gξ is defined as

R̂Gξ = {λ ∈ RG | ∀ r ∈ R suppλ ∩ ξ−1([r,∞)) is finite}

with λ · µ(g) =
∑

λ(g1)µ(g2) for λ, µ ∈ R̂Gξ. The sum is taken over all g1, g2 ∈ G
with g1g2 = g.

For λ ∈ R̂Gξ let

‖λ‖ξ = inf{t ∈ (0,∞) | supp λ ⊂ ξ−1((−∞, log t])}

be the norm of λ with respect to ξ. Note that R̂Gξ is a completion of the group ring
RG with respect to the metric induced by this norm. We can extend the definition
of the norm to n×m matrices over R̂Gξ by setting

‖A‖ξ = max {‖Aij‖ξ | i ∈ {1, . . . , n}, j ∈ {1, . . . , m} } .

It is easy to see that

‖A ·B‖ξ ≤ ‖A‖ξ · ‖B‖ξ(1)

for an n×m matrix A and an m× k matrix B.
Since the multiplication in R̂Gξ does not depend on ξ and R̂Gξ is a subgroup of
RG, we can intersect Novikov rings for different homomorphisms ξ : G → R and
obtain a ring again.
Define

R̂G
o

ξ = {λ ∈ R̂Gξ | ‖λ‖ξ ≤ 1}.

Because of (1) we get that R̂G
o

ξ is a subring of R̂Gξ.

Lemma 2.2. For i = 1, . . . , k let ξi : G → R be a homomorphism and ti ∈ (0,∞).
Denote ξ =

∑k
i=1 tiξi : G → R. Then

(1) R̂Gξ1 ∩ . . . ∩ R̂Gξk
is a subring of R̂Gξ.

(2) R̂G
o

ξ1
∩ . . . ∩ R̂G

o

ξk
is a subring of R̂G

o

ξ.
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Proof. It is enough to assume k = 2. Since R̂Gξ1 = R̂Gt1ξ1 for t1 > 0 we can
also assume t1 = t2 = 1. Let λ ∈ R̂Gξ1 ∩ R̂Gξ2 . There is r2 ∈ R with supp λ ∩
ξ−1
2 ([r2,∞)) = ∅. For r ∈ R we now get

supp λ ∩ ξ−1([r,∞)) ⊂ supp λ ∩ ξ−1
1 ([r − r2,∞)).

Since suppλ ∩ ξ−1
1 ([r − r2,∞)) is finite, we get (1).

To see (2) note that for λ in the intersection we get that g ∈ suppλ implies that
ξi(g) ≤ 0, hence also ξ(g) ≤ 0. ¤

Lemma 2.2 shows that the intersection R̂Gξ1 ∩ R̂Gξ2 is not just a subring of each
Novikov ring, but also a subring of the Novikov ring corresponding to a convex
combination of ξ1 and ξ2.

3. Torsion

Let R be a ring with unit. Then K1(R) is the abelian group generated by τ(f) for
each automorphism f : M → M , where M is a finitely generated projective left
R-module subject to the following relations.

(1) For a short exact sequence of automorphisms

0 // L //

e

²²

M //

f

²²

N //

g

²²

0

0 // L // M // N // 0

we have τ(e)− τ(f) + τ(g) = 0.
(2) For automorphisms f, g : M → M we have τ(f ◦ g) = τ(f) + τ(g).

Notice that for every automorphism f : M → M of the finitely generated projective
R-module M there exists an automorphism g : Rn → Rn of the finitely generated
free R-module Rn with τ(f) = τ(g). We can think of g as an invertible n × n
matrix over R. This leads to another way to describe K1(R). Let GL(n,R) be
the group of invertible n × n matrices over R. We have the standard inclusion
GL(n,R) ⊂ GL(n + 1, R) and let GL(R) be the direct limit. Then

K1(R) = GL(R)/[GL(R), GL(R)],

the abelianization of GL(R). Indeed the commutator subgroup is generated by
elementary matrices, see Cohen [1, §10]. Recall that an elementary matrix over a
ring R with unit is an n × n matrix Ex

ij for i 6= j and x ∈ R which has 1 in every
diagonal spot, x in the (i, j)-spot and zero everywhere else.
Let ξ : G → R be a homomorphism and let H = ker ξ. Restriction defines a ring
homomorphism ε : R̂G

o

ξ → RH with ε ◦ i = id : RH → RH, where i : RH → R̂G
o

ξ

is the natural inclusion. Let a ∈ R̂G
o

ξ satisfy ‖a‖ξ < 1. Then 1−a is a unit in R̂G
o

ξ

with inverse 1+a+a2 + . . . and as such it represents a torsion τ(1−a) ∈ K1(R̂G
o

ξ).

Let Wξ ⊂ K1(R̂G
o

ξ) be the subgroup of such torsions.
The proof of the next proposition is basically contained in Pajitnov [17, Lm.1.1],
compare also Pajitnov and Ranicki [20, Prop.2.11].
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Proposition 3.1. We have

K1(R̂G
o

ξ) = K1(RH)⊕Wξ

Proof. We get K1(R̂G
o

ξ) = K1(RH) ⊕ ker(ε∗ : K1(R̂G
o

ξ) → K1(RH)) by functo-
riality. Let B be a matrix with τ(B) ∈ ker ε∗. Then there exist matrices E, E′ ∈
[GL(RH), GL(RH)] with Eε(B)E′ = I. Note that E, E′ ∈ [GL(R̂G

o

ξ), GL(R̂G
o

ξ)],
so EBE′ = I − A with ‖A‖ξ < 1. Using elementary row and column operations it
follows that τ(I −A) = τ(1− a) for some 1− a ∈ R̂Gξ with ‖a‖ξ < 1. ¤

For K1(R̂Gξ) we do not obtain a similar formula as in Proposition 3.1, instead we
will content ourselves with a certain quotient of this group. Let W ξ be the image
of Wξ under the natural map i∗ : K1(R̂G

o

ξ) → K1(R̂Gξ). Sometimes we will write
W ξ(G) to emphasize the group G. The inclusion of rings RG ⊂ R̂Gξ induces a
natural homomorphism

i∗ : K1(RG) → K1(R̂Gξ)

and the composition of this with the projection to the quotient K1(R̂Gξ)/W ξ will
be denoted by i∗ as well. Our main result now reads

Theorem 3.2. Let G be a group, ξ : G → R a homomorphism and R a ring with
unit. Then i∗ : K1(RG) → K1(R̂Gξ)/W ξ is surjective.

For geometric applications the following quotients are particularly important.

Definition 3.3. Let G be a group and ξ : G → R be a homomorphism. Then we
define the Whitehead group of G as

Wh(G) = K1(ZG)/〈τ(±g) | g ∈ G〉
and the Whitehead group of the Novikov ring as

Wh(G; ξ) = K1(ẐGξ)/〈τ(±g), τ(1− a) | g ∈ G, 1− a ∈ ẐGξ, ‖a‖ξ < 1〉.

The Whitehead group Wh(G; ξ) of the Novikov ring first appeared in Latour [12].

Corollary 3.4. Let G be a group and ξ : G → R a homomorphism. Then i∗ :
Wh(G) → Wh(G; ξ) is surjective.

Before we proof Theorem 3.2 we will first take a closer look at homomorphisms of
the form ξ : Zn → R.

Remark 3.5. In the case of an injective homomorphism ξ : Zn → R it was shown
by Jean-Claude Sikorav that ẐZn

ξ is a Euclidean ring, compare Pajitnov [16, §1].
Therefore K1(ẐZn

ξ) is given by the group of units. It is easy to see that the
group of units in this case is exactly the group factored out in the definition of the
Whitehead group of the Novikov ring. Thus Wh(Zn; ξ) = 0. Unfortunately this
argument does not even generalize to homomorphisms ξ : Zn → R which are not
injective.
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4. Homomorphism from free abelian groups to the reals

Assume that G is a finitely generated group and ξ : G → R a nonzero homomor-
phism. Then ξ factors through the abelianization of G which is a finitely generated
abelian group. Thus Hom(G,R) is a finite dimensional vector space and has a
natural topology. We also define

S(G) = Hom(G,R)− {0}/ ∼
where ξ ∼ η means that there is a c > 0 such that ξ = cη. This is a sphere of
dimension rank(G/[G,G]) − 1. We will write [ξ] ∈ S(G) for the equivalence class
of a nonzero homomorphism ξ : G → R.
Now if ξ : G → R is a nonzero homomorphism, there exists a unique n ∈ Z such
that ξ factors as ξ̄ ◦ p with p : G → Zn surjective and ξ̄ : Zn → R injective. This n
is called the rank of n. If rank ξ = 1, we call ξ rational. We also write SQ(G) for
the image of the rational homomorphisms in S(G).
We will now take a closer look at the case G = Zn.

Lemma 4.1. For every ξ ∈ Hom(Zn,R) and a neighborhood U of ξ there is a
rational η ∈ U with ker ξ ⊂ ker η. In particular SQ(G) is dense in S(G) for every
finitely generated group G.

Proof. We can assume that ξ is injective. Let e1, . . . , en be a basis of Zn. Define
η : Zn → Q by η(ei) a rational number close to ξ(ei). By choosing η(ei) close enough
to ξ(ei) we can assure that η ∈ U . Now im η is a finitely generated subgroup of Q,
hence cyclic. ¤
Lemma 4.2. Let ξ ∈ Hom(Zn,R)−{0} and U a neighborhood of ξ in Hom(Zn,R).
Let k ≥ 1 be the rank of ξ. Then there exist ti ∈ (0, 1] and rational ξi ∈ U for
i = 1, . . . , k with

1 =
k∑

i=1

ti and ξ =
k∑

i=1

tiξi.

Proof. The proof proceeds by induction on k. The case k = 1 is trivial so we assume
k ≥ 2. Then im ξ is dense in R.
By Lemma 4.1 we can find a rational ξ1 ∈ U such that ker ξ ⊂ ker ξ1. Let ξ̄, ξ̄1 :
Zn/ ker ξ ∼= Zk → R be the induced homomorphisms. Let e1 ∈ Zk be an element
with ξ1(e1) > 0 a generator of the infinite cyclic group im ξ1. Write Zk = 〈e1〉 ⊕
Zk−1. Let m be a positive integer. Then we can find xm ∈ Zk−1 such that 0 <
ξ̄(me1 + xm) is arbitrarily close to 0. Also ξ̄1(me1 + xm) = mξ̄1(e1) can be made
arbitrarily large. Choose t ∈ (0, 1) such that ξ̄(me1 + xm) = tξ̄1(me1 + xm). Since
tξ1 is close to tξ, we get that ξ − tξ1 is close to (1 − t)ξ. We can assume t > 0
to be so small that ξ − tξ1 ∈ (1 − t)U . Since ξ̄(me1 + xm) = tξ̄1(me1 + xm) with
me1 + xm 6= 0 we get that ξ − tξ1 has rank < k.
Now let V = (1− t)U . By induction there exist rational ξ′2, . . . , ξ

′
k ∈ V, t′2, . . . , t

′
k ∈

(0, 1] with
∑k

i=2 t′i = 1 and

ξ − tξ1 =
k∑

i=2

t′iξ
′
i.

Setting t1 = t, ti = t′i(1− t) and ξi = 1
1−tξ

′
i for i = 2, . . . , k gives the result. ¤
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Lemma 4.2 shows that an injective homomorphism ξ : Zn → R can be written as a
convex combination of n rational homomorphisms which can be chosen arbitrarily
close to ξ. But we still need to improve on this.
Denote e1, . . . , en the standard basis of Zn ⊂ Rn and let 〈·, ·〉 be the standard inner
product on Rn, that is, the ei form an orthonormal basis with respect to this inner
product.
Now for every homomorphism ξ : Zn → R there exists a unique vector vξ ∈ Rn

such that ξ(x) = 〈x, vξ〉. For i = 1, . . . , n let yi = ξ(ei) ∈ R. Then the rank
of ξ is equal to the dimension of the Q-subspace of R generated by the yi. Note
that we get a surjective homomorphism ξ : Zn → Z if and only if all yi ∈ Z and
gcd(y1, . . . , yn) = 1.
Assume now that ξ : Zn → R is injective and let U be a neighborhood of [ξ] in
S(Zn). By Lemma 4.2 there exist homomorphisms ξi : Zn → Z and ti ∈ (0, 1] for
i = 1, . . . , n with [ξi] ∈ U and

[ξ] = [
n∑

i=1

tiξi].

Thus there exist vi ∈ Zn such that ξi = 〈·, vi〉 for i = 1, . . . , n and a c > 0 such that
cvξ =

∑n
i=1 tivi. Since ξ is injective, we get that v1, . . . , vn is an R-basis of Rn. In

general v1, . . . , vn need not be a Z-basis of Zn.
Now let

∆(v1, . . . , vn) =

{
n∑

i=1

sivi ∈ Rn | 0 ≤ si ≤ 1 for i = 1, . . . , n and
n∑

i=1

si ≤ 1

}

be the convex hull of the n + 1 points 0, v1, . . . , vn, an n-simplex in Rn.

Lemma 4.3. Let v1, . . . , vn ∈ Zn be linearly independent. Then v1, . . . , vn is a
Z-basis of Zn if and only if

Zn ∩∆(v1, . . . , vn) = {0, v1, . . . , vn} .

Proof. Assume that v1, . . . , vn is a Z-basis and let x ∈ Zn ∩∆(v1, . . . , vn). So there
exist xi ∈ Z for i = 1, . . . , n such that x =

∑n
i=1 xi · vi. Since x ∈ ∆(v1, . . . , vn) we

must have 0 ≤ xi ≤ 1 and
∑n

i=1 xi ≤ 1. Thus we can have at most one xi = 1. It
follows that x ∈ {0, v1, . . . , vn}.
Now assume that Zn ∩∆(v1, . . . , vn) = {0, v1, . . . , vn}. Since v1, . . . , vn are linearly
independent, they form an R-basis of Rn. Let x ∈ Zn. Thus there exist xi ∈ R for
i = 1, . . . , n with x =

∑n
i=1 xi · vi. We can find a y ∈ Zn in the Z-span of v1, . . . , vn

such that we have

x− y =
n∑

i=1

(xi − yi)vi

with 0 ≤ xi − yi ≤ 1. Without loss of generality we assume y = 0.
So v1, . . . , vn is a Z-basis if and only if for every x =

∑n
i=1 xi · vi ∈ Zn with

0 ≤ xi ≤ 1 for i = 1, . . . , n we have xi ∈ {0, 1} for all i = 1, . . . , n.
Let

2(v1, . . . , vn) =

{
n∑

i=1

sivi ∈ Rn | 0 ≤ si ≤ 1 for i = 1, . . . , n

}
.
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We need to show that

Zn ∩2(v1, . . . , vn) =

{
n∑

i=1

δivi | δi ∈ {0, 1} for i = 1, . . . , n

}
.(2)

Let H : Rn → Rn be the linear map given by H(ei) = vi for i = 1, . . . , n. Then H
sends [0, 1]n to 2(v1, . . . , vn) and

∆n =

{
n∑

i=1

siei ∈ [0, 1]n |
n∑

i=1

si ≤ 1

}

to ∆(v1, . . . , vn).
We claim that [0, 1]n has a triangulation whose 0-simplices is the set [0, 1]n ∩ Zn

and whose n-simplices are of the form K(∆n) with K ∈ GL(n,Z). Then we get
a triangulation of 2(v1, . . . , vn) whose set of 0-simplices is the right hand side of
(2). Any other element of Zn ∩ 2(v1, . . . , vn) lies in some n-simplex of the form
H(K(∆n)). Since K ∈ GL(n,Z) we get an extra element of Zn in H(∆n) =
∆(v1, . . . , vn) which is not possible by assumption. Therefore (2) follows.
It remains to show the triangulation statement, which we will prove by induction.
If n = 1 the statement is clear, so assume that [0, 1]n−1 has a triangulation with 0-
simplices the set [0, 1]n−1∩Zn−1 and whose n−1-simplices are of the form K(∆n−1)
with K ∈ GL(n− 1,Z).
To get a triangulation of ∆n−1 × [0, 1], look at the triangulation generated by the
n-simplices σj for j = 0, . . . , n− 1 where σj has as vertices the points

(0, 0), (e1, 0), . . . , (ej , 0), (ej , 1), . . . , (en−1, 1) ∈ Rn−1 × R.

Rewrite ej = (ej , 0) and ej + en = (ej , 1) for j = 1, . . . , n − 1. We also write
en = (0, 1). So σj has the vertices 0, e1, . . . , ej , ej + en, . . . , en−1 + en for j =
1, . . . , n− 1 and σ0 has the vertices 0, en, e1 + en, . . . , en−1 + en. Clearly there is an
Hj ∈ GL(n,Z) for j = 0, . . . , n− 1 such that Hj(∆n) = σj .
The argument can be repeated for n− 1-simplices of the form K(∆n−1) with K ∈
GL(n,Z). Indeed this is triangulated such that the n-simplices are of the form
K(Hj(∆n)), where K = i(K) with i : GL(n − 1,Z) → GL(n,Z) the standard
inclusion. This finishes the proof of the lemma. ¤

Proposition 4.4. Let ξ : Zn → R be an injective homomorphism and U an open
neighborhood of [ξ] ∈ S(Zn). Then there exist homomorphisms ξi : Zn → Z for
i = 1, . . . , n and a Z-basis t1, . . . , tn of Zn such that

(1) [ξi] ∈ U for all i = 1, . . . , n.

(2)
n⋂

i=1

R̂Zn
ξi ⊂ R̂Zn

ξ.

(3) ξi(tj) = δij =
{

1 i = j
0 else for all i, j = 1, . . . , n.

Proof. By Lemma 4.2 there exist homomorphisms ξ′i : Zn → Z and ti ∈ (0, 1] for
i = 1, . . . , n such that [ξ′i] ∈ U and [ξ] = [

∑
tiξ

′
i]. Since Hom(Zn,R) is locally

convex we can also assume that [
∑

siξ
′
i] ∈ U for every (s1, . . . , sn) ∈ [0, 1]n.

Let v′i ∈ Zn be such that ξ′i(x) = 〈x, v′i〉 and v ∈ Rn such that ξ(x) = 〈x, v〉.
Look at ∆(v′1, . . . , v

′
n). Note that the R-subspace 〈v〉 generated by v has nontrivial
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intersection with the interior of ∆(v′1, . . . , v
′
n). Also, if y ∈ ∆(v′1, . . . , v

′
n)∩Zn, then

[ξy] ∈ U where ξy(x) = 〈x, y〉 by the convexity property that we assume.
By compactness of ∆(v′1, . . . , v

′
n) the set

A = Zn ∩∆(v′1, . . . , v
′
n)− {0, v′1, . . . , v

′
n}

is finite. Let B ⊂ Hom(Zn,R) be the ball around 0 of radius 1, that is, B = {v ∈
Rn | 〈v, v〉 ≤ 1}.
For y ∈ A and j = 1, . . . , n let ∆j = ∆(y, v1, . . . , v

′
j−1, v

′
j+1, . . . , v

′
n), that is, we

replace v′j by y. Then we can write

B ∩∆(v′1, . . . , v
′
n) =

n⋃

j=1

B ∩∆j

and ∆j ∩ ∆i has empty interior for i 6= j. Since ξ is injective there is a unique
j such that 〈v〉 ∩ int∆j 6= ∅. We can think of y, v′1, . . . , v

′
j−1, v

′
j+1, . . . , v

′
n giving a

better approximation of v than v′1, . . . , v
′
n, compare Figure 1, where ∆(x, z) should

be replaced by ∆(x, y).

zy

x

0

v

Figure 1.

Let

A1 = Zn ∩∆(y, v′1, . . . , v
′
j−1, v

′
j+1, . . . , v

′
n)− {0, y, v′1, . . . , v

′
j−1, v

′
j+1, . . . , v

′
n}

for this j. Clearly A1 ⊂ A − {y}, so after finitely many steps we get vectors
v1, . . . , vn ∈ Zn such that

Zn ∩∆(v1, . . . , vn) = {0, v1, . . . , vn}
and 〈v〉 ∩ int∆(v1, . . . , vn) 6= ∅. By Lemma 4.3 we have that v1, . . . , vn is a Z-basis
of Zn.
For i = 1, . . . , n Define ξi : Zn → Z by ξi(x) = 〈x, vi〉. Then [ξi] ∈ U and
[ξ] = [

∑
siξi] for some s1, . . . , sn ∈ (0, 1]. Therefore we get (1), and (2) by Lemma

2.2.1.
Let T : Zn → Zn be the linear map given by T (vi) = ei for i = 1, . . . , n. Define
the inner product (x, y) = 〈Tx, Ty〉 and let T ∗ : Zn → Zn be the adjoint of T with
respect to (·, ·). Note that v1, . . . , vn is an orthonormal basis with respect to this
inner product. Now let ti = TT ∗vi for i = 1, . . . , n. Then t1, . . . , tn is a Z-basis of
Zn and

ξi(tj) = 〈TT ∗vj , vi〉 = (T ∗vj , T
−1vi) = (vj , vi) = δij .
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This finishes the proof. ¤

5. Proof of Theorem 3.2

Lemma 5.1. Let ξ : G → R be a nonzero homomorphism and τ0 ∈ K1(R̂Gξ)/W ξ.
Then there exists a matrix A over RG which is invertible over R̂Gξ with τ(A) =
τ0 ∈ K1(R̂Gξ)/W ξ. Furthermore, if G is finitely generated, there is a neighborhood
U of [ξ] in S(G) such that A is invertible over

⋂
[η]∈V R̂Gη for every subset V ⊂ U .

Proof. Let Ā be an invertible n× n matrix over R̂Gξ with τ(Ā) = τ0. Let Ā−1 be
its inverse. Choose a matrix A over RG such that ‖A − Ā‖ξ < min{1, ‖Ā−1‖−1

ξ }
and a matrix B over RG such that ‖B− Ā−1‖ξ < min{1, ‖Ā‖−1

ξ }. To do this define

Aij(g) =
{

Āij(g) for exp(ξ(g)) ≥ min{1, ‖Ā−1‖−1
ξ }

0 otherwise

and similarly for B. Then

A ·B = (Ā + (A− Ā)) · (Ā−1 + (B − Ā−1)) = I − C

B ·A = (Ā−1 + (B − Ā−1)) · (Ā + (A− Ā)) = I − C ′

with ‖C‖ξ, ‖C ′‖ξ < 1. Since A and B are matrices over RG, so are C and C ′. Also
there is an ε > 0 such that ‖C‖ξ, ‖C ′‖ξ ≤ 1− ε. Let

F =
n⋃

i,j=1

supp Cij ∪ suppC ′ij ,

a finite subset of G. In particular ξ(g) < 0 for all g ∈ F . There is a neighborhood
U ′ of ξ in Hom(G,R) such that η(g) < 0 for every g ∈ F and every η ∈ U ′. Let
U be the projection of U ′ to S(G). Then ‖C‖η, ‖C ′‖η < 1 for every η ∈ U and we
get that I − C is invertible over R̂Gη with inverse I + C + C2 + . . . and the same
for I −C ′. Then A has a left and a right inverse over intersections of such Novikov
rings.

To see that τ(A) = τ(Ā) ∈ K1(R̂Gξ)/W ξ note that

A · Ā−1 = (Ā + (A− Ā)) · Ā−1 = I −D

with ‖D‖ξ < 1. ¤

Now assume that G is finitely generated, so that there is a k ≥ 1 such that
G/ ker ξ ∼= Zk. Now let U be neighborhood of [ξ] in S(G). By Proposition 4.4 we can
find homomorphisms ξi : G → Z for i = 1, . . . , k with [ξi] ∈ U ,

⋂k
i=1 R̂Gξi ⊂ R̂Gξ,

and g1, . . . , gk ∈ G such that ξi(gj) = −δij for i, j = 1, . . . , k. Picking gi with
ξi(gi) = −1 instead of +1 has mainly cosmetic purposes.
For j = 0, . . . , k let

Λj = R̂G
o

ξ1
∩ . . . ∩ R̂G

o

ξj
∩ R̂Gξj+1 ∩ . . . ∩ R̂Gξk

=
{

λ ∈ R̂Gξ1 ∩ . . . ∩ R̂Gξk
| ‖λ‖ξi ≤ 1 for i = 1, . . . , j

}

Note that Λ0 =
⋂k

i=1 R̂Gξi and that the ring Λj is obtained from Λj+1 by inverting
gj+1.
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Also define for j = 1, . . . , k

Gj = {g ∈ G | ξi(g) ≤ 0 for i ≤ j}
Kj = {g ∈ Gj | ξj(g) = 0}

We then have subrings RKj ⊂ RGj ⊂ Λj for j = 1, . . . , k.
Denote i∗ : K1(Λj) → K1(Λ0) and i∗ : K1(RG) → K1(Λ0) the natural maps.

Proposition 5.2. Let n be a positive integer and A : (Λj)n → (Λj)n an au-
tomorphism for some j ∈ {0, . . . , k − 1}. Then there exist τ1 ∈ K1(RG) and
τ2 ∈ K1(Λj+1) with

i∗τ(A) = i∗(τ1) + i∗(τ2) ∈ K1(Λ0).

The proof of this proposition uses the methods of Pajitnov and Ranicki [20, Lm.2.18-
2.19]. Since our notation differs quite a bit from theirs we give a full proof, but
defer it to the next section. Assuming Proposition 5.2 we can now proof Theorem
3.2.

Proof of Theorem 3.2. Assume G is finitely generated. Let τ0 ∈ K1(R̂Gξ)/W ξ. We
can represent τ0 by an invertible matrix A. By Lemma 5.1 we can assume that A
has entries in RG and that there is a neighborhood U of ξ such that A is invertible
over

⋂
η∈V R̂Gη for every subset V ⊂ U .

Choose the ξi as above so we get that A is invertible over Λ0. In particular we get
τ0 = i∗τ(A) where i∗ : K1(Λ0) → K1(R̂Gξ) is induced by the inclusion of Lemma
2.2 (1).
Iterating Proposition 5.2 we get

τ0 = i∗(τk) + i∗(τ ′)(3)

with τk ∈ K1(Λk) and τ ′ ∈ K1(RG). But the inclusion Λk ⊂ R̂Gξ factors through
R̂G

o

ξ by Lemma 2.2 (2) and therefore we get

i∗(τk) = i∗(τ(w)) + i∗(τ ′′) ∈ K1(R̂Gξ)(4)

with τ(w) ∈ Wξ and τ ′′ ∈ K1(RG) by Proposition 3.1. But i∗(τ(w)) ∈ W ξ so
by combining (3) and (4) we get τ0 = i∗(τ ′ + τ ′′) ∈ K1(R̂Gξ)/W ξ with τ ′ + τ ′′ ∈
K1(RG). This finishes the proof for finitely generated G.
For the general case we need two more lemmas.

Lemma 5.3. Let A be an invertible n × n matrix over R̂Gξ with τ(A) = 0 ∈
K1(R̂Gξ)/W ξ. Then there exist elementary matrices E1, . . . , Ek over RG and a
matrix E over R̂Gξ with ‖E‖ξ < 1 such that for a stabilization of A we get(

A
I

)
= E1 · · ·Ek · (I − E)

Proof. Since i∗τ(A) = 0 we get
(

A
I

)
= F1 · · ·Fl with the Fi being either

elementary matrices over R̂Gξ or matrices of the form I −D with ‖D‖ξ < 1. Since
the elementary matrices generate the commutator of GL(R) for any ring R with
unit we can assume that Fl = I − D with ‖D‖ξ < 1 and the remaining matrices
are elementary.
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It remains to show that we can replace the elementary matrices over R̂Gξ by ele-
mentary matrices over RG. For this we will prove the following:

Given elementary matrices E′
1, . . . , E

′
k over R̂Gξ and ε ∈ (0, 1), there exist elemen-

tary matrices E1, . . . , Ek over RG and a matrix E over RG with ‖E‖ξ < ε, such
that

E′
1 · · ·E′

k = E1 · · ·Ek · (I − E)(5)

We prove it by induction on k. The case k = 0 is trivial. Now assume the statement
is true for k−1. Then E′

1 · · ·E′
k = E′

1 · · ·E′
k−1 ·E′

k. By induction hypothesis we can
find elementary matrices E1, . . . , Ek−1 over RG and E′ with ‖E′‖ξ < ε · ‖E′

k‖−2
ξ

such that E′
1 · · ·E′

k−1 = E1 · · ·Ek−1 · (I − E′). Now

(I − E′) · E′
k = E′

k · (I − (E′
k)−1 · E′ · E′

k).

Since we can write E′
k = Ek−Rk = Ek(I −E−1

k Rk) with Ek an elementary matrix
over RG and ‖Rk‖ξ < ε·‖E′

k‖−1
ξ we get the claim. Notice that ‖E′

k‖−1
ξ = ‖Ek‖−1

ξ =
‖E−1

k ‖−1
ξ and ‖F‖ξ ≥ 1 for every elementary matrix F .

This shows (5) and the lemma follows. ¤

If H ≤ G is a finitely generated subgroup, we get a subring R̂Hξ ⊂ R̂Gξ and an
induced map i∗ : K1(R̂Hξ)/W ξ(H) → K1(R̂Gξ)/W ξ(G). Furthermore we get a
direct system (Hj)j∈I of finitely generated subgroups of G ordered by inclusion

which induces a direct system of abelian groups
(
K1(R̂Hjξ)/W ξ(Hj)

)
j∈I

.

Lemma 5.4. Let G be a group and ξ : G → R a homomorphism. Then K1(R̂Gξ)/

W ξ(G) is the direct limit of
(
K1(R̂Hjξ)/W ξ(Hj)

)
j∈I

, where (Hj)j∈I are the finitely

generated subgroups of G.

Proof. We need to show that

(1) for every τ0 ∈ K1(R̂Gξ)/W ξ(G) there is a finitely generated subgroup H

and τ ′ ∈ K1(R̂Hξ)/W ξ(H) with τ0 = i∗τ ′.
(2) If τ0 ∈ K1(R̂H1ξ)/W ξ(H1) satisfies i∗τ0 = 0 ∈ K1(R̂Gξ)/W ξ(G) for a

finitely generated H1, there exists a finitely generated subgroup H2 con-
taining H1 such that i∗τ0 = 0 ∈ K1(R̂H2ξ)/W ξ(H2).

For (1) represent τ0 by an invertible matrix Ā over R̂Gξ. Choose matrices A, B

over RG with ‖A − Ā‖ξ < min{1, ‖Ā−1‖−1
ξ } and ‖B − Ā−1‖ξ < min{1, ‖Ā‖−1

ξ }.
Then A ·B = I − C with ‖C‖ξ < 1 and A is invertible with A−1 = B · (I − C)−1.
Also C = I −A ·B is a matrix over RG. Hence

F =
n⋃

i,j=1

supp Aij ∪ supp Bij ∪ suppCij

is a finite subset of G which generates a finitely generated subgroup H. Also
B · (I − C)−1 is a well defined matrix over R̂Hξ and we get τ0 = i∗τ(A).
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Now let A be an invertible matrix over R̂H1ξ with i∗τ(A) = 0 ∈ K1(R̂Gξ)/W ξ(G).
By Lemma 5.3 we get (

A
I

)
= E1 · · ·Ek · (I − E)

with Ei elementary matrices over RG and ‖E‖ξ < 1. Let

F =
n⋃

i,j=1

k⋃

l=1

supp (El)ij ,

a finite subset of G, and let H2 be the subgroup of G generated by H1 and F , a
finitely generated subgroup of G. As above it follows that I − E is an invertible
matrix over R̂H2ξ and we get i∗τ(A) = 0 ∈ K1(R̂H2ξ)/W ξ(H2). ¤

We note that Lemma 5.4 is not true in general if we replace K1(R̂Gξ)/W ξ(G) by
K1(R̂Gξ).
For a finitely generated subgroup H of G we already know that i∗ : K1(RH) →
K1(R̂Hξ)/W ξ(H) is surjective. Thus we get a surjection of direct systems

(
i∗ : K1(RHj) → K1(R̂Hjξ)/W ξ(Hj)

)
j∈I

.

Since the direct limit is an exact functor we get a surjection between the direct lim-
its. By Lemma 5.4 this means we get a surjection i∗ : K1(RG) → K1(R̂Gξ)/W ξ(G)
which is clearly the map in Theorem 3.2. ¤

6. Proof of Proposition 5.2

We keep the notation established above Proposition 5.2. We will frequently write
Λn

j for the finitely generated free Λj-module (Λj)n. Similarly we will write gl
j for

(gj)l, where l is an integer.
Recall that ξj+1(gj+1) = −1, so gj+1 defines a left Λj+1-module morphism gj+1 :
Λj+1 → Λj+1 by x 7→ x · gj+1.

Lemma 6.1. Let l be a positive integer. Then the Λj+1-module morphism gl
j+1 :

Λn
j+1 → Λn

j+1, x 7→ x · gl
j+1 is such that coker gl

j+1 is a finitely generated free
RKj+1-module.

Proof. It suffices to look at the case n, l = 1. Let x ∈ Λj+1. If g ∈ supp x, then
ξi(g) ≤ 0 for i ≤ j + 1. If ξj+1(g) < 0, then g · g−1

j+1 ∈ Λj+1. Hence we can write
x = x1 + x2 with x1 ∈ RKj+1 and x2 · g−1

j+1 ∈ Λj+1, and this decomposition is
unique. But x2 ∈ im gj+1 and so coker gj+1 = RKj+1. ¤

We have that A : Λn
j → Λn

j is an automorphism. Choose l ≥ 0 so that for x ∈ Λn
j+1

we get A(x) · gl
j+1 ∈ Λn

j+1 ⊂ Λn
j . Then we can define an injective Λj+1-module

morphism
Ã : Λn

j+1 −→ Λn
j+1

x 7→ A(x) · gl
j+1

Let

Pj+1 = coker(Ã : Λn
j+1 → Λn

j+1).



14 DIRK SCHÜTZ

The next lemma is the analogue of Pajitnov and Ranicki [20, Lm.2.18].

Lemma 6.2. We have

(1) Pj+1 is a finitely generated projective RKj+1-module.
(2) The map ν : Pj+1 → Pj+1, x 7→ gj+1 · x is nilpotent.

Proof. Let B : Λn
j → Λn

j be the inverse of A. Choose m ≥ 0 so that for all x ∈ Λn
j+1

we get B(x · g−l
j+1) · gm

j+1 ∈ Λn
j+1 ⊂ Λn

j . Define the Λj+1-module morphism

B̃ : Λn
j+1 −→ Λn

j+1

x 7→ B(x · g−l
j+1) · gm

j+1

Restriction defines an RKj+1-module morphism r : Λn
j → Λn

j+1 with the property
that r ◦ i = id : Λn

j+1 → Λn
j+1. Thus define the RKj+1-module morphism

C̃ : Λn
j+1 −→ Λn

j+1

x 7→ r(A(x · g−m
j+1) · gl

j+1)

We get the commutative diagram

0 // Λn
j+1

Ã // Λn
j+1

//

B̃

²²

Pj+1 //

²²

0

0 // Λn
j+1

gm
j+1

// Λn
j+1

//

C̃

²²

m⊕
s=1

RKn
j+1

//

²²

0

0 // Λn
j+1

Ã // Λn
j+1

// Pj+1 // 0

It is easy to see that C̃ ◦ B̃ = id : Λn
j+1 → Λn

j+1 and therefore Pj+1 is finitely
generated projective over RKj+1 as a direct summand of a finitely generated free
RKj+1-module. Here the middle row follows from Lemma 6.1.
To see that ν is nilpotent, let x ∈ Λn

j+1. In Λn
j we get

gm+l
j+1 · x = gm+l

j+1 · x · g−l
j+1 · gl

j+1 = A ◦B(gm+l
j+1 · x · g−l

j+1) · gl
j+1

= A(gm
j+1 ·B(gl

j+1 · x · g−l
j+1) · gm

j+1 · g−m
j+1) · gl

= A(gm
j+1 · B̃(gl

j+1 · x) · g−m
j+1) · gl

j+1 = Ã(y)

with y = gm
j+1 · B̃(gl

j+1 · x) · g−m
j+1 ∈ Λn

j+1. Thus gm+l
j+1 · x ∈ im Ã. ¤

We have that Pj+1 is also a Λj+1-module. Define a Λj+1-module morphism

π : Λj+1 ⊗RKj+1 Pj+1 −→ Pj+1

λ⊗ x 7→ λ · x
Let

Λj+1gj+1 = {λgj+1 ∈ Λj+1 |λ ∈ Λj+1}
Then (Λj+1gj+1)n is a free Λj+1-module. Also RKj+1 acts on the right by ordinary
multiplication. Notice that if we write λgj+1 for the elements of Λj+1gj+1 this
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means λgj+1 · r = λ(gj+1rg
−1
j+1)gj+1 for r ∈ RKj+1. Define the Λj+1-module

morphism

ρ : Λj+1gj+1 ⊗RKj+1 Pj+1 −→ Λj+1 ⊗RKj+1 Pj+1

λgj+1 ⊗ x 7→ λgj+1 ⊗ x− λ⊗ gj+1 · x
Lemma 6.3. The following sequence is a finitely generated projective Λj+1-module
resolution of Pj+1.

0 // Λj+1gj+1 ⊗RKj+1 Pj+1
ρ

// Λj+1 ⊗RKj+1 Pj+1
π // Pj+1 // 0

Proof. We can split the sequence over RKj+1 using the RKj+1-module morphisms

σ : Pj+1 −→ Λj+1 ⊗RKj+1 Pj+1

x 7→ 1⊗ x

and
ω : Λj+1 ⊗RKj+1 Pj+1 −→ Λj+1gj+1 ⊗RKj+1 Pj+1

λ⊗ x 7→ λ⊗ x + λg−1
j+1 ⊗ gj+1x + λg−2

j+1 ⊗ g2
j+1x + . . .

where · : Λj → Λj+1gj+1 denotes restriction. Notice that we have a finite sum only,
since gm+l

j+1 · x = 0 by Lemma 6.2 (2). This shows that the sequence is exact. ¤

The two projective Λj+1 resolutions can be related by a commutative diagram

0 // Λn
j+1

Ã //

f

²²

Λn
j+1

//

g

²²

Pj+1 // 0

0 // Λj+1gj+1 ⊗RKj+1 Pj+1
ρ

// Λj+1 ⊗RKj+1 Pj+1
π // Pj+1 // 0

We can think of (f, g) as a chain homotopy equivalence between 1-dimensional
finitely generated projective Λj+1-chain complexes. Notice that after tensoring
with Λ0 we get that both 1⊗ Ã and 1⊗ ρ become automorphisms, since

Λ0 ⊗RKj+1 Pj+1 −→ Λ0 ⊗Λj+1 Λj+1gj+1 ⊗RKj+1 Pj+1

λ⊗ p 7→ λg−1
j+1 ⊗ gj+1 ⊗ p

is a canonical isomorphism.
The sequence

0 // Λn
j+1

0
@ f

Ã

1
A

// Λj+1gj+1 ⊗RKj+1 Pj+1 ⊕ Λn
j+1

“
ρ −g

”

// Λj+1 ⊗RKj+1 Pj+1 // 0

splits, so denote ( d1 d2 ) : Λj+1gj+1 ⊗RKj+1 Pj+1 ⊕ Λn
j+1 → Λn

j+1 a morphism
with d1f + d2Ã = idΛn

j+1
. Denote

h =
(

ρ −g
d1 d2

)
: Λj+1gj+1 ⊗RKj+1 Pj+1 ⊕ Λn

j+1 → Λj+1 ⊗RKj+1 Pj+1 ⊕ Λn
j+1
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the resulting isomorphism. Restriction defines a ring homomorphism Tj+1 : Λj+1 →
RKj+1 such that Tj+1◦i : RKj+1 → RKj+1 is the identity. We get an isomorphism

(i ◦ Tj+1)∗h : Λj+1gj+1 ⊗RKj+1 Pj+1 ⊕ Λn
j+1 → Λj+1 ⊗RKj+1 Pj+1 ⊕ Λn

j+1

since Λj+1 ⊗RKj+1 RKj+1 ⊗Λj+1 Λj+1gj+1 ⊗RKj+1 Pj+1 = Λj+1gj+1 ⊗RKj+1 Pj+1.
Therefore we get an automorphism

h ◦ ((i ◦ Tj+1)∗h)−1 : Λj+1 ⊗RKj+1 Pj+1 ⊕ Λn
j+1 → Λj+1 ⊗RKj+1 Pj+1 ⊕ Λn

j+1

which defines a torsion
τ(f, g) ∈ K1(Λj+1).

Since

RG⊗RKj+1 Pj+1 −→ RG⊗RKj+1 RKj+1 ⊗Λj+1 Λj+1gj+1 ⊗RKj+1 Pj+1

x⊗ p 7→ xg−1
j+1 ⊗ 1⊗ gj+1 ⊗ p

is a canonical isomorphism, we get an automorphism

(iG ◦ Tj+1)∗h : RG⊗RKj+1 Pj+1 → RG⊗RKj+1 Pj+1

where iG : RKj+1 → RG denotes inclusion. It follows that

i∗τ(f, g) + i∗τ((iG ◦ Tj+1)∗h) = τ(1Λ0 ⊗ h) ∈ K1(Λ0).(6)

Note that Λ0 ⊗RKj+1 Pj+1 is canonically isomorphic to Λ0 ⊗RKj+1 RKj+1 ⊗Λj+1

Λj+1gj+1 ⊗RKj+1 Pj+1, so 1Λ0 ⊗ h defines an automorphism.
But over Λ0 we have the commutative diagram

Λn
0

0
@ fÃ−1

1

1
A

//

Ã−1

²²

Λ0 ⊗RKj+1 Pj+1 ⊕ Λn
0

“
1 −fÃ−1

”

//

0
@ ρ −g

d1 d2

1
A

²²

Λ0 ⊗RKj+1 Pj+1

ρ

²²

Λn
0

0
@ 0

1

1
A

// Λ0 ⊗RKj+1 Pj+1 ⊕ Λn
0

“
1 0

”

// Λ0 ⊗RKj+1 Pj+1

where we have written ϕ instead of 1⊗ ϕ for all the morphisms involved. Since all
vertical arrows are automorphisms and the rows are short exact sequences we get

τ(1⊗ h) = τ(1⊗ ρ)− τ(1⊗ Ã) ∈ K1(Λ0).(7)

Now

τ(1⊗ Ã) = i∗τ(A) + τ(gln
j+1)(8)

and

τ(1⊗ ρ) = i∗τ(1− p)(9)

where
1− p : RG⊗RKj+1 Pj+1 −→ RG⊗RKj+1 Pj+1

g ⊗ x 7→ g ⊗ x− g · g−1
j+1 ⊗ gj+1 · x

is an automorphism with inverse 1 + p + p2 + . . . + pm+l−1. Combining (6), (7), (8)
and (9) finishes the proof of Proposition 5.2.
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7. Further remarks and questions

In the case of a rational homomorphism ξ : G → R we get a short exact sequence

0 // H // G // Z // 0

with H = ker ξ. In that case RG can be identified with a twisted Laurent poly-
nomial ring RHρ[t, t−1] where ρ : RH → RH is an automorphism induced by the
action of Z on H. Similarly R̂Gξ can be identified with a twisted Laurent series
ring

RHρ((t)) = RHρ[[t]][t−1].

The classical Bass-Heller-Swan decomposition in the twisted case, see Farrell and
Hsiang [10], Siebenmann [28] and Pajitnov and Ranicki [20], then reads

K1(RHρ[t, t−1]) = K1(RH, ρ)⊕ Ñil0(RH, ρ)⊕ Ñil0(RH, ρ−1)(10)

where Ñil0(RH, ρ±1) is the reduced class group of pairs (P, ν) with P a finitely
generated projective RH-module and ν : P → P a nilpotent ρ±1-endomorphism.
Also K1(RH, ρ) fits into an exact sequence

K1(RH)
1−ρ

// K1(RH) i // K1(RH, ρ)
j

// K0(RH)
1−ρ

// K0(RH) .

Pajitnov and Ranicki [20] obtained the corresponding decomposition for the Novikov
ring which is

K1(RHρ((t))) = K1(RH, ρ)⊕Wξ ⊕ Ñil0(RH, ρ−1).(11)

The two decompositions are related in that the natural map i∗ : K1(RHρ[t, t−1]) →
K1(RHρ((t))) maps the copy of Ñil0(RH, ρ) into Wξ and is the identity on the
remaining direct summands. In particular this implies Theorem 3.2 in the case of a
rational homomorphism. It also shows that i∗ : K1(RG) → K1(R̂Gξ)/W ξ is not an
isomorphism in general. But it follows that the diagonal map induced by inclusion

∆ : K1(RHρ[t, t−1]) −→ K1(RHρ((t)))⊕K1(RHρ((t−1)))

is injective. The analogous result for an arbitrary homomorphism ξ also holds.

Theorem 7.1. Let ξ : G → R be a nonzero homomorphism. Then the diagonal
map

∆ : K1(RG) −→ K1(R̂Gξ)/W ξ ⊕K1(R̂G−ξ)/W−ξ,

induced by inclusion, is injective.

Proof. It is enough to consider the case when G is finitely generated. Let τ0 ∈
K1(RG) satisfy ∆(τ0) = 0. Let A be an invertible matrix over RG with τ(A) = τ0.
In particular i∗τ(A) = 0 ∈ K1(R̂Gξ)/W ξ. By Lemma 5.3 there exist elementary
matrices E1, . . . , Ek over RG and a matrix E over R̂Gξ with ‖E‖ξ < 1 such that
A = E1 · · ·Ek(I−E), possibly after stabilizing A. Since A and the Ei are matrices
over RG, we get that E is also a matrix over RG. Now there is a small neighborhood
of U of [ξ] in S(G) such that ‖E‖η < 1 for all η with [η] ∈ U . In particular
i∗τ(A) = 0 ∈ K1(R̂Gη)/W η.

Since we also have i∗τ(A) = 0 ∈ K1(R̂G−ξ)/W−ξ, there is a small neighborhood
V of [−ξ] with i∗τ(A) = 0 ∈ K1(R̂G−η)/W−η for all η with [−η] ∈ V. Since
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−V is a neighborhood of [ξ] we can find a rational η with [η] ∈ U ∩ −V so that
∆(τ0) = 0 ∈ K1(R̂Gη)/W η ⊕ K1(R̂G−η)/W−η. But since η is rational we get
τ0 = 0. ¤
Corollary 7.2. Let G be a group and ξ : G → R a nonzero homomorphism. Then
Wh(G; ξ) = 0 if and only if Wh(G) = 0.

Proof. Observe that g → g−1 induces a ring isomorphism of ẐGξ to the oppo-
site ring of ẐG−ξ. This induces an isomorphism Wh(G; ξ) ∼= Wh(G;−ξ) and the
corollary follows from Corollary 3.4 and Theorem 7.1. ¤

A natural question is whether the direct sum decomposition of (11) has a general-
ization to K1(R̂Gξ), in particular one can ask if W ξ is a direct summand. It may
be possible to carry over the techniques of Pajitnov and Ranicki [20] at least for
the ring Λ0 of Section 5.
A similar question is whether we always have Wξ = W ξ as in the rational case.
This would allow us to get a better understanding of W ξ since Sheiham [27, Thm.B]
gives a detailed description of Wξ. To see this, note that the ring homomorphism
ε : R̂G

o

ξ → RH given by restriction is a local augmentation in the sense of [27].

The Latour obstruction. Let M be a closed connected smooth manifold with
dim M ≥ 6 and denote G = π1(M). Then Hom(G,R) = H1(M ;R) and such coho-
mology classes can be realized by closed 1-forms. Latour [12] gives two necessary
and sufficient conditions for the existence of a nonsingular closed 1-form within a
fixed cohomology class ξ. To describe the first homotopy theoretical condition let
X be a finite CW complex, G = π1(X), ξ ∈ H1(X;R) and X̃ the universal cover
of X. Since R is contractible we can define a map h : X̃ → R such that

h(gx) = h(x) + ξ(g)(12)

for all x ∈ X̃ and g ∈ G. Note that we regard ξ as a homomorphism ξ : G → R
here. A map h : X̃ → R satisfying (12) is called a height function for ξ.

Definition 7.3. Let X be a finite CW complex, G = π1(X) and ξ ∈ H1(X;R).
Then X is called ξ-contractible, if there exists a G-equivariant homotopy H : X̃ ×
I → X̃ with H0 = idX̃ and

h(H1(x))− h(x) ≤ −ε for all x ∈ X̃

for some ε > 0 and height function h : X̃ → R.

It is easy to see that ξ-contractibility does not depend on the height function or the
ε > 0. Furthermore it is a homotopy invariant. For several equivalent conditions
for ξ-contractibility we refer the reader to Latour [12, Prop.1.4]. By [12, Prop.1.10]
ξ-contractibility implies that the completed cellular chain complex ẐGξ⊗ZG C∗(X)
is acyclic. In that case we define

τL(X, ξ) = τ(ẐGξ ⊗ZG C∗(X)) ∈ Wh(G; ξ)

Latour’s theorem then reads

Theorem 7.4. [12] Let M be a closed connected smooth manifold with dim M ≥ 6
and ξ ∈ H1(M ;R). Then there exists a nonsingular closed 1-form ω representing
ξ if and only if M is (±ξ)-contractible and τL(M, ξ) = 0 ∈ Wh(G; ξ).
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In the case of an integer valued cohomology class ξ ∈ H1(M ;Z) = [M, S1] the
existence of a nonsingular closed 1-form representing ξ is equivalent to the existence
of a fibre bundle map f : M → S1 whose homotopy class represents ξ. This question
was solved by Farrell [8, 9] and Siebenmann [28] who obtain an obstruction in
Wh(G). An exposition of this case is given in Ranicki [21, §15], who also shows
that the Farrell-Siebenmann obstruction is mapped to Latour’s obstruction under
the natural map i∗, see also [26].
Because of Corollary 3.4 we know in general that there is an element of Wh(G) that
gets mapped to the Latour obstruction, but the question remains whether there is
a natural geometric way to define an obstruction in Wh(G) that gets mapped to
the Latour obstruction under i∗ as in the rational case. A partial answer to this
is given in [26]. Let ρ : M̄ → M be the regular covering space corresponding to
ker ξ. By [26, Thm.1.3] we have that M̄ is finitely dominated if and only if M is
η-contractible for every nonzero homomorphism η : π1(M) → R with ker ξ ⊂ ker η.
In particular all Latour obstructions τL(M, η) are defined. Furthermore it is shown
in [26] that all Farrell-Siebenmann obstructions for such rational η agree and can be
used as an obstruction for ξ. Note that M̄ being finitely dominated is not necessary
for M to be (±ξ)-contractible if ξ is not rational. Nevertheless we get the following
corollary of Theorem 7.4.

Corollary 7.5. Let M be a closed connected smooth manifold with dim M ≥ 6
such that Wh(π1(M)) = 0 and let ξ ∈ H1(M ;R). Then there exists a nonsingular
closed 1-form ω representing ξ if and only if M is (±ξ)-contractible. ¤

Whitehead groups can be very complicated but it is conjectured for example that
Wh(π1(M)) = 0 for aspherical manifolds M . This conjecture has been verified
in many special cases, in particular if M is a compact manifold which admits a
Riemannian metric of nonpositive sectional curvature, see Farrell and Jones [11].
For more examples of vanishing Whitehead groups of torsion-free groups see Lück
and Reich [13, Thm.5.20.1] and the references given there.

Localization. In order to study the Morse theory of closed 1-forms, we can look
at a subring of the Novikov ring ẐGξ with ξ : G → R injective using localization.
For this let

Sξ = {1− a ∈ ZG | ‖a‖ξ < 1},
a multiplicatively closed subset of ZG. This gives rise to the inclusions of rings
ZG ⊂ S−1

ξ ZG ⊂ ẐGξ. This localization has some technical advantages over the
Novikov ring. It appeared first in Farber [5] for the inclusion ξ : Z → R and more
generally in Pajitnov [16].
In the case of an arbitrary homomorphism ξ : G → R we can use a noncommutative
localization in the sense of Cohn [2]. For this let M(ZG) be the set of all (finite)
diagonal matrices over ZG and

Σξ = {I −A ∈ M(ZG) | ‖A‖ξ < 1}.
Then there exists a ring Σ−1

ξ ZG together with a ring homomorphism ε : ZG →
Σ−1

ξ ZG such that ε(M) is invertible for every M ∈ Σξ having the following universal
property: For every ring R and ring homomorphism ρ : ZG → R such that ρ(M)
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is invertible for every M ∈ Σξ, there exists a unique ring homomorphism ρ1 :
Σ−1

ξ ZG → R such that ρ = ρ1ε.

In particular the inclusion ZG ⊂ ẐGξ factors as ZG → Σ−1
ξ ZG → ẐGξ.

This ring was first introduced in Pajitnov [19] and was also used by Farber and
Ranicki [7] and Farber [6]. The main theorem of these papers can be stated as

Theorem 7.6. Let M be a closed smooth manifold with G = π1(M) and let ξ ∈
H1(M ;R). Then for any closed 1-form ω having only Morse zeros and representing
ξ there exists a free chain complex Cω

∗ over Σ−1
ξ ZG such that Cω

∗ is chain homotopy
equivalent to the localized chain complex Σ−1

ξ ZG ⊗ZG C∗(M̃) and each Σ−1
ξ ZG-

module Cω
j has a canonical free basis which is in a one-to-one correspondence with

the zeros of the closed 1-form ω of index j.

To discuss the torsion of this equivalence, let

Wh(G; Σξ) = K1(Σ−1ZG)/〈τ(±g), τ(I −A) | g ∈ G, I −A ∈ Σξ〉.
Clearly we get a factorization

Wh(G) −→ Wh(G; Σξ) −→ Wh(G; ξ).

Furthermore, if we denote the chain homotopy equivalence described in Theorem
7.6 by ϕ : Cω

∗ → Σ−1
ξ ZG ⊗ZG C∗(M̃), we get τ(ϕ) = 0 ∈ Wh(G; Σξ). For rational

ξ this is shown in Ranicki [22], and the techniques of [22, §1] can be used to show
that the chain collapse of [6] has zero torsion in Wh(G; Σξ).

Proposition 7.7. The natural map i∗ : Wh(G; Σξ) → Wh(G; ξ) is an isomor-
phism.

Proof. It is surjective by Corollary 3.4, but note that we only need the proof of
Lemma 5.1 to show surjectivity.
Let A be an invertible matrix over Σ−1

ξ ZG. By Schofield [23, Thm.4.3] there exist
matrices B and B′ over ZG and a matrix A′ over Σ−1

ξ ZG such that

B

(
I A′

0 A

)
= B′ with B =




B1 0
. . .

∗ Bn




where each Bi ∈ Σξ. In particular B represents an invertible matrix over Σ−1
ξ ZG

with τ(B) = 0 ∈ Wh(G; Σξ). Therefore B′ is also invertible and τ(A) = τ(B′) ∈
Wh(G; Σξ).
Now if i∗τ(B′) = 0 ∈ Wh(G; ξ), then by Lemma 5.3 there exist elementary matrices
E1, . . . , Ek over ZG and a matrix E necessarily over ZG with ‖E‖ξ < 1 and B′ =
E1 · · ·Ek(I − E). Note that I − E ∈ Σξ, so τ(B′) = 0 ∈ Wh(G; Σξ). ¤
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